Читаем Апории Зенона и проблема движения полностью

Осмысливая принципы, лежащие в основе теории множеств (которая может, как известно, рассматриваться в качестве фундамента современной математики), Дж. Р. Шенфилд указывает на “следующий фундаментальный вопрос: если дана совокупность S шагов, то существует ли шаг, следующий за каждым шагом из S?” [10] Рассматривая случаи, когда S состоит из единственного шага или из бесконечной последовательности шагов Sn, Si,…, он отвечает на поставленный вопрос утвердительно: “В первых двух случаях мы отчетливо можем представить себе ситуацию, когда все шаги из S уже осуществлены” [11]. Применим эти рассуждения к апории Ахилл. Ряд ½1, ½2, ½3,…, ½n,… не может быть завершен, т. к. у него отсутствует последний элемент. Но представим себе, что Ахилл уже побывал в каждой из точек, которая следует за всеми точками бесконечного ряда и является концом пути. Движение, таким образом, завершено. Проблема, однако, в том и заключается, каким образом получилось так, что Ахилл побывал во всех точках не имеющего конца ряда ½1, ½2, ½3,…, ½n,…? Если уже “дано”, то и говорить не о чем – апория разрешается, фактически, путем постулирования наличия решения [12].

Логически все это непротиворечиво (вопреки мнению самого Зенона). Но здесь процесс движения, содержащий, по условию задачи, бесконечное число шагов, сводится, по сути, к трем шагам: на шаге 1 вводится ряд точек ½1, ½2, ½3,…, ½n,…, на шаге 2 постулируется, что Ахилл побывал в каждой из этих точек, а на шаге 3 делается вывод о завершении движения в конечной точке, не принадлежащей рассматриваемому ряду. В результате как бы “пересчитан” ряд, упорядоченный по типу ω+1. По видимости речь идет о бесконечном по числу шагов процессе, тогда как на деле процесс при таком подходе завершается за три шага. Сказанное приобретает бóльшую наглядность, если обратиться к симметричной ситуации с апорией Дихотомия. Здесь вначале движущееся тело поместим в точке старта. Затем добавим к имеющейся точке старта совокупность точек, упорядоченный по типу ω*, получив тем самым линейный порядок типа 1+ω*, и, на последнем шаге, постулируем, что тело побывало в каждой из точек ряда ω*. Значит, движение успешно началось, хотя между точкой старта и любой из последующих точек лежит бесконечное множество промежуточных точек. Снова перед нами процесс из трех шагов, и снова вопрос о принципиальной возможности пересчета бесконечного порядкового типа 1+ω* обходится путем постулирования преодоления бесконечности за один шаг.

Легко представить себе совокупности, упорядоченные по типам ω+1 и 1+ω*, в качестве данностей. Но вообразить процесс пошагового получения этих совокупностей элемент за элементом, в соответствии с порядком на них, логически невозможно. Неизбежно на каком-то шаге либо а) будет нарушен порядок прохождения элементов (наряду с движениями от предыдущих точек к последующим придется вводить скачки от последующих точек к предыдущим), либо б) потребуется постулировать переход не от элемента к элементу, а от совокупности элементов к элементу или наоборот. Первая альтернатива ускользнула от внимания исследователей и потому требует особого разбора, который будет проведен в дальнейшем.

Что касается второй альтернативы, то именно она реализуется в рассмотренных псевдорешениях парадоксов движения. Между тем, в апориях Зенона движение понимается как переход от точки к точке, но ни в коем случае не как переход от совокупности точек к точке или обратно. Проблема в том, можно ли, двигаясь от одной точки пути к другой, завершить движение, и в том, можно ли, попав в какую-то точку, найти другую точку, куда нужно попасть на следующем шаге, что необходимо для начала процесса движения. Если же вместо переходов от точки к точке в процессе движения нам рекомендуют переходить от множества точек к отдельным точкам или от отдельных точек к множествам точек, то поставленная проблема подменяется другими. Кроме того, если в процессе движения мы должны посетить бесконечное количество точек, то и сам этот процесс неизбежно оказывается содержащим бесконечное число шагов. Как было показано, переходы от совокупностей точек к точкам и обратно могут совершаться за конечную последовательность шагов. Просто на одном из этих шагов обязательно будет использована бесконечная совокупность точек, введенная как актуальная данность, но не полученная в процессе поэтапного конструирования структура. В этом и заключается изъян предлагаемого разрешения апорий.

<p><emphasis>Летящая стрела</emphasis></p>
Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия