Из книги «Метод механических теорем» можно понять, что Архимед не скрывал свои методы от научного сообщества того времени, как мы уже показывали на примере константинопольского палимпсеста. В частности, он отправил этот труд Эратосфену, решив, что в данном случае он попадет в хорошие руки и сможет послужить получению новых интересных результатов.
Несмотря на то что Герои цитирует эту книгу в своем трактате «Метрика», многие источники описывают Архимеда ученым, ревниво относившимся к своей работе и не склонным популяризировать свою методологию. К счастью, в 1906 году исследователь-эллинист Гейберг обнаружил «Метод» и другие труды ученого, содержащиеся в палимпсесте. На самом деле Архимед охотно обнародовал и свои открытия, и научные методы, приведшие к этим открытиям. Он даже побуждал Эратосфена воспользоваться его методикой, уверяя последнего, что «можно было бы использовать этот путь для того, чтобы достичь определенных научных результатов посредством механики».
Из письма Архимеда Эратосфену в «Методе»
Таким образом, в данной работе Архимед объясняет собственный механический метод. Кроме механического метода трактат содержит и геометрический (метод исчерпывания), приписываемый Евдоксу. Механический метод здесь использован исключительно для приблизительного решения задач, которые требуют затем более строгого и убедительного доказательства геометрическими методами:
После обращения к Эратосфену автор переходит к изложению 11 лемм, где содержится определение центра тяжести.
Здесь важно заметить, что он приводит как нечто само собой разумеющееся некоторые результаты из собственной работы «О равновесии плоских фигур». Трактат дошел до нас не полностью — из него сохранились 16 утверждений с некоторыми важными уточнениями. В первых 11 автор представляет механический метод сам по себе, а в остальных описывает весь процесс, включая последующее доказательство с помощью вышеупомянутого метода исчерпывания. Архимед затрагивает большое количество вопросов, которые он уже исследовал в предыдущих трудах: например, квадратура сегмента параболы — темы, изложенной в книге «О квадратуре параболы». Первое утверждение трактата, проиллюстрированное на рисунке на следующей странице, звучит так:
«Пусть АВС — сегмент, заключенный между отрезком прямой АС и параболой АВС; поделим АС напополам точкой D и проведем прямую DBE параллельно оси параболы, а также отрезки АВ, ВС. Я утверждаю, что сегмент параболы АВС по площади равен четырем третьим треугольника АВС». («Метод механических теорем», утверждение 1.)