Читаем Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей полностью

Термин байесовский (bayesian) можно перевести как «вероятностный». Он встречается в таких сочетаниях, как «байесовские методы машинного обучения» или «байесовские сети». Они относятся к алгоритмам, которые используют вероятностные зависимости. Термин назван в честь священника Томаса Байеса (1701–1761), который сформулировал способ обновления вероятности события после возникновения другого, статистически взаимозависимого с ним. Байесовские методы очень популярны как среди специалистов по теории вычислительных машин и систем, так и среди ученых, моделирующих человеческое познание. Больше всего по этой теме рассказал Джуда Перл.

<p>Способы обучения ИИ-систем</p>

Существуют разные типы машинного обучения. Решающую роль в развитии искусственного интеллекта играют инновации, то есть новые способы обучения систем ИИ.

При обучении с учителем (supervised learning) алгоритму передаются структурированные, классифицированные и снабженные метками данные. Например, чтобы научить систему глубокого обучения распознавать на снимках собак, ей нужно предоставить много тысяч (или даже миллионов) изображений этого животного с меткой «собака». Кроме того, потребуется огромное количество изображений без собаки с меткой «нет собаки». После обучения можно показывать системе новые фотографии, и она будет определять наличие на них собаки на уровне, превосходящем возможности обычного человека.

Обучение с учителем – наиболее распространенный метод, применяемый в современных системах ИИ. На его долю приходится около 95 % практических приложений. Именно оно послужило основой машинного перевода (после обучения на миллионах предварительно переведенных документов) и ИИ-систем диагностики (после обучения на снимках с пометками «рак» и «нет рака»). К сожалению, для такого обучения требуются огромные объемы маркированных данных. Именно поэтому лидирующее положение в технологии глубокого обучения занимают такие компании, как Google, Amazon и Facebook.

Обучение с подкреплением (reinforcement learning), по сути, представляет собой обучение на практике или методом проб и ошибок. Система учится не на правильных размеченных данных, а самостоятельно ищет решение, получая подкрепление в случае успеха. Это напоминает дрессировку животных, которым в случае правильных действий дается кусочек вкусной еды. Именно обучение с подкреплением применялось для построения систем ИИ, играющих в игры. Из интервью с Демисом Хассабисом вы узнаете, что компания DeepMind использовала этот тип обучения для разработки компьютерной системы AlphaGo.

Проблема обучения по этому алгоритму заключается в необходимости огромного количества тренировочных попыток. Поэтому он применяется в основном для игр или для задач, которые можно воспроизводить на компьютере с высокой скоростью. Обучение с подкреплением можно использовать при разработке беспилотных автомобилей, но не для их эксплуатации на реальных дорогах. Виртуальные машины обучаются в искусственной среде, а после завершения обучения программное обеспечение устанавливается на реальные автомобили.

Обучение без учителя (unsupervised learning) обеспечивает непосредственное обучение на поступающих из окружающей среды неструктурированных данных. Именно так учатся люди. Например, дети учатся говорить, слушая речь родителей. Разумеется, человек использует и другие типы обучения, но самым характерным для него остается наблюдение и неконтролируемое взаимодействие с окружающей средой.

Обучение без учителя – один из наиболее многообещающих путей развития ИИ. Только представьте системы, умеющие обучаться сами без подготовки данных. Но их разработка – одна из самых сложных задач. Ее решение станет важной точкой на пути к созданию сильного ИИ.

Термин сильный ИИ обозначает истинно мыслящую машину, изначальную цель создания ИИ. Еще его называют интеллектом, сравнимым с человеческим разумом. Примеры сильного ИИ можно наблюдать в научной фантастике: компьютер HAL 9000 из «Космической одиссеи», главный компьютер космического корабля «Энтерпрайз» (или Дэйта) из «Звездного пути», андроид C3PO из «Звездных войн» и агент Смит из «Матрицы». Все эти вымышленные системы могли пройти тест Тьюринга (Turing test), то есть вести беседу как человек. Этот тест был предложен Аланом Тьюрингом в статье 1950 г. «Вычислительные машины и разум»[7], которую можно считать основополагающей работой в области ИИ.

Есть вероятность, что когда-нибудь появится cуперинтеллект (superintelligence), или машина, превосходящая интеллектуальные способности любого человека. Это может произойти в результате простого увеличения аппаратных мощностей и быть ускорено самосовершенствованием этой машины. Так она запустит «рекурсивный цикл улучшения» или «быстрый интеллектуальный взлет», создавая проблему «выравнивания», если вступит в противоречие с интересам человека.

Перейти на страницу:

Похожие книги

21 урок для XXI века
21 урок для XXI века

«В мире, перегруженном информацией, ясность – это сила. Почти каждый может внести вклад в дискуссию о будущем человечества, но мало кто четко представляет себе, каким оно должно быть. Порой мы даже не замечаем, что эта полемика ведется, и не понимаем, в чем сущность ее ключевых вопросов. Большинству из нас не до того – ведь у нас есть более насущные дела: мы должны ходить на работу, воспитывать детей, заботиться о пожилых родителях. К сожалению, история никому не делает скидок. Даже если будущее человечества будет решено без вашего участия, потому что вы были заняты тем, чтобы прокормить и одеть своих детей, то последствий вам (и вашим детям) все равно не избежать. Да, это несправедливо. А кто сказал, что история справедлива?…»Издательство «Синдбад» внесло существенные изменения в содержание перевода, в основном, в тех местах, где упомянуты Россия, Украина и Путин. Хотя это было сделано с разрешения автора, сравнение версий представляется интересным как для прояснения позиции автора, так и для ознакомления с политикой некоторых современных российских издательств.Данная версии файла дополнена комментариями с исходным текстом найденных отличий (возможно, не всех). Также, в двух местах были добавлены варианты перевода от «The Insider». Для удобства поиска, а также большего соответствия теме книги, добавленные комментарии отмечены словом «post-truth».Комментарий автора:«Моя главная задача — сделать так, чтобы содержащиеся в этой книге идеи об угрозе диктатуры, экстремизма и нетерпимости достигли широкой и разнообразной аудитории. Это касается в том числе аудитории, которая живет в недемократических режимах. Некоторые примеры в книге могут оттолкнуть этих читателей или вызвать цензуру. В связи с этим я иногда разрешаю менять некоторые острые примеры, но никогда не меняю ключевые тезисы в книге»

Юваль Ной Харари

Обществознание, социология / Самосовершенствование / Зарубежная публицистика / Документальное
Открытый заговор
Открытый заговор

Работа «Открытый Заговор» принадлежит перу известного английского писателя Герберта Уэллса, широко известного в России в качестве автора научно-фантастических романов «Машина времени», «Человек-невидимка», «Война миров» и другие. Помимо этого, Уэллс работал в жанрах бытового романа, детской, научно-популярной литературы и публицистики. «Открытый Заговор» – редкий для английского писателя жанр, который можно назвать политическим. Предлагаемую работу можно даже назвать манифестом, содержащим призыв к человечеству переустроить мир на новых началах.«Открытый Заговор» ранее не переводился на русский язык и в нашей стране не издавался. Первая версия этой работы увидела свет в 1928 году. Несколько раз произведение перерабатывалось и переиздавалось. Настоящая книга является переводом с издания 1933 года. Суть предлагаемого Уэллсом переустройства мира – в демонтаже суверенных государств и создании вместо них Мирового государства, возглавляемого Мировым правительством. Некоторые позиции программы «Открытого Заговора» выглядят утопичными, но, вместе с тем, целый ряд положений программы уже воплощен в жизнь, а какие-то находятся в стадии реализации. Несмотря на то что работа писалась около 90 лет назад, она помогает лучше понять суть процессов, происходящих сегодня в мире.

Герберт Джордж Уэллс , Герберт Уэллс

Государство и право / Политика / Зарубежная публицистика / Документальное