Разумеется, сформированный мной список субъективен – в развитии ИИ участвует множество профессионалов. Но я уверен, что почти любой человек, обладающий глубокими знаниями в этой области, поддержит мой выбор. Всех этих людей можно без преувеличения назвать творцами ИИ, приближающими начало новой научно-технической революции.
В интервью я старался задать наиболее острые вопросы, появившиеся в процессе развития ИИ. Какие подходы и технологии считаются наиболее перспективными? Какие крупные открытия возможны в ближайшие годы? Можно ли создать по-настоящему мыслящую машину или ИИ, сравнимый с человеческим, и как скоро? Какие риски и угрозы связаны с ИИ и как их избежать? Требуется ли для этой области государственное регулирование? Вызовет ли ИИ хаос в экономике и на рынке труда? Смогут ли суперинтеллектуальные машины выйти из-под контроля человека и превратиться в реальную угрозу? Нужно ли беспокоиться о «гонке вооружений» в области ИИ?
Разумеется, предсказать будущее невозможно. Тем не менее эксперты знают о текущем состоянии технологий, а также об инновациях ближайшего будущего больше, чем кто бы то ни было. Поэтому их мысли и мнения заслуживают внимания. Помимо ИИ, мы обсудили образование, карьеру и исследовательские интересы, поэтому чтение будет увлекательным и вдохновляющим.
Искусственный интеллект – это широкая область исследований, сопряженная с множеством дополнительных дисциплин. Многие из моих собеседников совмещали работу в нескольких областях. Сейчас я кратко расскажу, как опрошенные относятся к наиболее важным инновациям в исследованиях ИИ и задачам будущего. Основная информация о каждом из них будет приведена в начале соответствующего интервью.
Подавляющее большинство достижений сферы ИИ последнего десятилетия – от распознавания лиц до машинного перевода и победы в игре го – основаны на технологии глубокого обучения, или глубоких нейронных сетей. Искусственные нейронные сети, в которых программно эмулируется структура и взаимодействие нейронов головного мозга, появились примерно в 1950-х гг. Простые версии этих сетей могли решать элементарные задачи по распознаванию объектов на изображениях, что сначала вызывало сильный энтузиазм. Однако к 1960 г., частично из-за критики Марвина Минского – одного из пионеров ИИ, – нейронные сети потеряли популярность, а им на смену пришли другие подходы.
В течение примерно 20 лет, начиная с 1980-х гг., небольшая группа исследователей продолжала верить в технологию нейронных сетей и продвигать ее. Среди них выделялись Джеффри Хинтон (Geoffrey Hinton), Иошуа Бенджио (Yoshua Bengio) и Ян Лекун (Yann LeCun). Они не только внесли вклад в лежащую в основе глубокого обучения математическую теорию, но и первыми стали продвигать технологию «глубоких» сетей с несколькими слоями искусственных нейронов. Им удалось донести идею нейронных сетей до времен экспоненциального роста вычислительных мощностей и увеличения объема доступных данных. В 2012 г. команда аспирантов Хинтона из Университета Торонто победила в конкурсе по распознаванию объектов на изображениях.
После этого события глубокое обучение стало общедоступным. Большинство крупных технологических компаний – Google, Facebook, Microsoft, Amazon, Apple, Baidu и Tencent – инвестировали огромные суммы в новую технологию, чтобы использовать ее в своем бизнесе. Разработчики микропроцессорных и графических чипов (GPU), такие как NVIDIA и Intel, переорганизовали бизнес под создание оборудования, оптимизированного для нейронных сетей. Именно глубокое обучение сегодня раскрывает сферу ИИ.
Такие ученые, как Эндрю Ын (Andrew Ng), Фей-Фей Ли (Fei-Fei Li), Джефф Дин (Jeff Dean) и Демис Хассабис (Demis Hassabis), используют современные нейронные сети в таких областях, как поисковые системы, компьютерное зрение, беспилотные автомобили и универсальный ИИ. Это признанные лидеры в области преподавания, управления и предпринимательства на базе технологии нейронных сетей.
Однако глубокое обучение подвергается критике. Ряд ученых считают его «одним из инструментов в наборе», утверждая, что для дальнейшего прогресса нужны идеи из других областей. Барбара Грош (Barbara Grosz) и Дэвид Ферруччи (David Ferrucci) занимаются проблемами понимания естественного языка. Гари Маркус (Gary Marcus) и Джош Тененбаум (Josh Tenenbaum) изучают человеческое познание. Орен Этциони (Oren Etzioni), Стюарт Рассел (Stuart Russell) и Дафна Коллер (Daphne Koller) специализируются на вероятностных методах. Джуда Перл (Judea Pearl) за работу по вероятностным (или байесовским) подходам к ИИ и машинному обучению получил премию Тьюринга.
Сфера робототехники также развивается благодаря таким ученым, как Родни Брукс (Rodney Brooks), Даниэла Рус (Daniela Rus) и Синтия Бризил (Cynthia Breazeal). Бризил вместе с Раной эль Калиуби (Rana El-Kaliouby) – первопроходцы в построении систем, умеющих распознавать эмоции, реагировать на них и вступать в социальные взаимодействия с людьми. Брайан Джонсон (Bryan Johnson) основал компанию