Инмана заинтересовал тот факт, что таким же способом может работать память человека, в то время как каждый отдельный нейрон не отвечает за ее сохранение. Он предположил, что информация в мозге хранится благодаря настройке силы связей между нейронами, и что, по сути, это распределенное представление, то есть попытка изобразить какие-то вещи, которым соответствует активность в ряде нейронов, но каждый нейрон участвует в представлении разных вещей. При таком подходе исключено однозначное соответствие между нейронами и понятиями. Это первое, что меня заинтересовало. Кроме того, было интересно, каким образом мозг может учиться чему-то, регулируя силу соединений между нейронами.
М. Ф.: И это в старших классах школы? Потрясающе! А как поменялись ваши интересы после поступления в университет?
Дж. Х.: Там я начал изучать физиологию. И узнал, как нейроны распространяют потенциалы действия. Помогли эксперименты на аксоне гигантского кальмара. Оказалось, что именно так работает мозг. Но я разочаровался, узнав, что не существует модели процесса представления или изучения различных вещей.
Я переключился на психологию, думая, что здесь мне скажут, как работает мозг. Но в то время в Кембридже основной упор делался на бихевиоризм, и изучение психологии сводилось к крысам в лабиринтах. Конечно, занимались и когнитивной психологией, но это не имело отношения к вычислительным методам, поэтому мне казалось, что мы никогда не узнаем, как же работает мозг.
В рамках проекта по изучению развития детей я смотрел, как в возрасте от 2 до 5 лет меняется восприятие различных свойств. Оказалось, что совсем маленькие дети в основном интересуются цветом и текстурой, а по мере взросления их начинает интересовать форма. Детям демонстрировались три объекта, один из которых отличался от двух других. Например, два желтых круга и один красный. Мне нужно было научить детей убирать лишний объект.
В следующих заданиях лишним был объект другой формы. После этого детям предложили желтый треугольник, желтый круг и красный круг. Предполагалось, что если детей больше интересует цвет, они уберут красный круг, а если форма – лишним окажется желтый треугольник. Один пятилетний ребенок указал на красный круг и сказал: «Он покрашен в неправильный цвет».
Я работал над подтверждением крайне примитивной модели, которая всего лишь утверждала, что фокус смещается от цвета к форме, но никак не объясняла почему. Ребенок же обработал информацию, которую ему давали в виде обучающих примеров, и, столкнувшись с набором, допускавшим удаление более чем одного объекта, решил, что, возможно, что-то покрашено не в тот цвет.
Тестируемая модель не была адаптирована к уровню сложности изучаемой системы, и других адекватных моделей не было. Передо мной была интеллектуальная система, умеющая обрабатывать информацию и делать выводы о причинах происходящего. И я прекратил ее исследовать таким неэффективным способом.
М. Ф.: После этого вы начали заниматься ИИ?
Дж. Х.: Нет, я стал плотником. И некоторое время наслаждался этим, пока не увидел работу настоящего мастера. Это меня так расстроило, что я решил вернуться в науку.
М. Ф.: Если вспомнить, что было дальше, наверное, к лучшему, что вам не удалось стать по-настоящему квалифицированным плотником!
Дж. Х.: Дальше я принял участие в проекте по изучению развития речевых навыков у детей. Хотелось понять, каким образом на них влияет принадлежность к определенному социальному классу. Мне нужно было создать вопросник для оценки отношения матерей. Первое же интервью меня ошарашило. Женщина из бедного пригорода Бристоля на вопрос, как она относится к тому, что ребенок разговаривает, ответила: «Если он начинает разговаривать, мы его бьем». На этом моя карьера социального психолога завершилась.
Я поступил в аспирантуру Университета Эдинбурга по специальности ИИ. Моим руководителем был Хью Кристофер Лонге-Хиггинс, который изначально занимался химией в Кембридже, а затем переключился на изучение ИИ. Он верил в компьютерное моделирование, поэтому я попросился к нему. К сожалению, у него как раз начался переломный период. Он решил, что нейронные модели ничего не дают, а к пониманию интеллекта нужно идти через язык.
Напомню, что как раз тогда появились модели систем, которые могли определять расположение блоков. В них применялась обработка символов. Американский профессор Терри Виноград показал, как заставить компьютер в определенной степени понимать язык, отвечать на вопросы и фактически следовать командам. Можно было сказать: «Покажи блок, который находится в синем ящике на вершине красного куба», и получить желаемое. Лонге-Хиггинса это сильно впечатлило, и он решил над этим работать, я же предпочел продолжить изучение нейронных сетей.
Я считаю Кристофера замечательным ученым, хотя мы и не смогли прийти к согласию в работе. Он поддерживал меня, даже когда я отказывался делать то, что он говорил. В конце концов, я защитил диссертацию по нейронным сетям, хотя в то время они, по общему мнению, были полной чепухой.