Наша цель – сделать так, чтобы применение методов машинного обучения стало таким же простым, как отправка запроса к базе данных. Тогда машинное обучение можно будет использовать в небольших городах для установки таймеров светофоров.
М. Ф.
: То есть вы стремитесь к демократизации ИИ. А что, на ваш взгляд, мешает созданию сильного ИИ?Дж. Д.
: При обучении с учителем после постановки задачи начинается сбор данных. В итоге появляется модель, которая хорошо справляется с конкретной задачей, но не умеет ничего другого.Для получения универсальной интеллектуальной системы нужна модель, способная выполнять сотни тысяч задач. Которая, когда перед ней будет поставлена 100 001-я задача, сможет самостоятельно использовать накопленный опыт для разработки новых, эффективных методов ее решения. Чтобы постепенно для решения новых задач требовалось все меньше и меньше данных и наблюдений.
Я думаю, это можно реализовать путем экспериментов. Возможно, системы могут учиться на демонстрируемых примерах. По сути, это тоже обучение на маркированных данных, просто роботам показывается, скажем, как человек наливает жидкость в стакан, а они повторяют это действие. По идее в таком случае для обучения будет достаточно небольшого количества примеров.
Но для создания таких систем требуется масса вычислительных ресурсов. Ведь, чтобы попробовать разные подходы к решению задач, эксперименты должны проводиться очень быстро. Это одна из причин для инвестиций в крупномасштабные аппаратные ускорители машинного обучения, такие как TPU.
М. Ф.
: А какие опасности, с вашей точки зрения, несет с собой ИИ? О чем нам имеет смысл беспокоиться?Дж. Д.
: Правительствам следует готовиться к крупным изменениям на рынках труда. Уже сейчас компьютеры могут автоматизировать многие вещи, которые были недоступны для автоматизации лет пять назад. И постепенно этот процесс затронет множество различных профессий и рабочих мест.В 2016 г. я присутствовал на заседании Бюро по определению научно-технической политики Белого дома. Там примерно 20 специалистов по машинному обучению и около 20 экономистов обсуждали будущее рынков труда. Потому что это задача правительства – выяснить, что можно предложить людям, чьи рабочие места меняются или исчезают, какие новые навыки или варианты переобучения доступны.
М. Ф.
: Потребуется ли нам в один прекрасный день такая вещь, как универсальный базовый доход?Дж. Д.
: Я не знаю. Трудно предсказать, как будут развиваться события, потому что сколько бы связанных с развитием технологий изменений мы ни переживали в прошлом, каждый раз это происходило по-новому. И промышленная революция, и сельскохозяйственная революция вызывали дисбаланс в обществе.Людям уже сейчас важно проявлять гибкость и изучать новые вещи. Полвека назад выпускник вуза мог начать карьеру и долгое время ее строить, сегодня же обычна ситуация, когда человек, поработав несколько лет, приобретает новые навыки и уходит в другую сферу.
Что касается других рисков, меня, в отличие от Ника Бострома, не очень беспокоит возможность появления суперинтеллекта. Я уверен, что, как ученые и исследователи, мы сможем создать системы машинного обучения таким образом, чтобы они интегрировались в общество и начали приносить пользу всем. К сожалению, прекрасные вещи сопровождаются многочисленными нюансами, о которых не стоит забывать.
М. Ф.
: Но ведь разработкой сильного ИИ занимается небольшая группа людей, которая не обязана быть в курсе всех сопутствующих проблем. Должны ли регулироваться такие исследования и применение ИИ?Дж. Д.
: Возможно. Но хотелось бы, чтобы этим занимались люди, обладающие нужным опытом. Мне кажется, что регулирование порой происходит с задержкой, так как государственные структуры пытаются угнаться за стремительно меняющейся ситуацией. В таких вопросах нужна не реакция под влиянием момента, а информированный диалог с людьми на местах.Разрабатывая сильный ИИ, важно помнить об этических аспектах. Именно поэтому Google выпустила документ, в котором четко и недвусмысленно перечислены принципы, которыми руководствуется в исследованиях[22]
. Мы думаем не только о техническом развитии, но и о том, какие проблемы мы хотим решать и какими способами.Дафна Коллер
Генеральный директор и основатель компании INSITRO, внештатный преподаватель computer science в Стэнфорде