Стабилизация цитоплазматических мембран наблюдалась нами в определенном интервале концентрации ЭМ от 0,05 до 0,0005%. При этом стабилизация мембран микробных клеток отмечена при значительно меньшей концентрации ЭМ, чем стабилизация мембран лимфоцитов. В ИА резистентность мембран практически не отличалась от ЕА (соответственно 0,55 и 0,53) и достоверно отличалась от резистентности мембран клеток в ИА (0,53 и 0,25 соответственно).
Приведенные данные свидетельствуют о том, что длительное (до 3 мес) отсутствие в атмосфере РАВ сопряжено с достоверным снижением резистентности мембран эритроцитов. Постоянная биогенизация атмосферы сопровождается восстановлением резистентности мембран до нормы.
Ионы калия и состояние трансмембранного потенциала.
Большинство энергетических и электрофизиологических процессов в организме протекают с изменением концентрации электролита внутри и вне клеток. Калий является важнейшим внутриклеточным катионом. Наблюдаемый сдвиг в балансе калия обусловлен изменением его содержания в клетках. Калий принимает участие в аккумуляции и в освобождении энергии в организме.Натрий — главный ион внеклеточной жидкости. Содержание К + в клетках в 20 раз выше, чем концентрация Na + (Na/K — 1:20), а содержание внеклеточного К + в 28 раз меньше концентрации внеклеточного Na + (Na/K — 28:1). Ионы натрия и калия стремятся уйти туда, где их концентрация меньше: ионы калия — из клетки, ионы натрия — в клетку.
Функцию по транспортировке ионов калия и натрия через биологические мембраны выполняет Na-K-зависимая АТФаза-фермент. Ка +-АТФаза восстанавливает исходные градиенты, откачивая наружу и закачивая К + внутрь нейрона. При снижении мембранного потенциала открываются Na-каналы. При этом в нейрон-клетку поступают положительные ионы, что приводит к перемене знака потенциала (минус — снаружи, плюс — внутри). Возбуждение распространяется по нейрону и аксону. К + каналы открываются позднее.
Градиент К + противоположен градиенту Na +, в связи с чем ионы К + перемещаются наружу, при этом мембранный потенциал возвращается к исходному состоянию.
Итак, поток Na + внутрь клетки приводит к переразрядке мембран, противоположно направленный поток К + — к восстановлению исходного потенциала покоя.
Нами исследовано влияние РАВ на проницаемость мембран клеток для ионов калия и состояние трансмембранного потенциала. В ЕА проницаемость мембран для калия составляла 0,37. При длительном отсутствии РАВ в атмосфере гермообъема проницаемость мембран для ионов калия повысилась до 0,6. В БИА показатели проницаемости мембран для ионов калия достоверно не изменялись.
Трансмембранный потенциал в ЕА составил 0,55, в ИА — снизился до 0,35, а в БИА — нормализовался (0,53).
Таким образом, при отсутствии РАВ в атмосфере происходит снижение проницаемости мембран для ионов калия, трансмембранного потенциала. Биогенизация сопровождается нормализацией показателей трансмембранного потенциала и достоверно не влияет на проницаемость мембран для ионов калия.
Потребление кислорода клетками организма.
Кислород жизненно необходим для осуществления всех функций организма, поскольку он участвует в нормальных окислительных реакциях. Более того, считают, что внутриклеточная активность кислорода может рассматриваться как необходимая стадия биоэнергетического обмена. Однако это явление рассматривается как универсальный механизм повреждения клетки. В биологических системах кислород обычно восстанавливается с помощью ферментов, что ведет к образованию его активных форм. Получены данные, что активные формы кислорода могут участвовать в формировании хронического процесса, например патологии печени [Логинов А.С. и др., 1994], т.е. избыточная концентрация кислорода в клетках создает опасность его токсического действия. В то же время радиозащитный эффект связан со снижением кислорода в тканях на 20—30%. Этот эффект универсален и занимает определенное место в механизме радиозащитного действия.Поскольку кислород хорошо растворим в жирах, он легко проникает через липидный слой мембран и при этом может стать причиной образования свободных радикалов, активации ПОЛ. Определяющим фактором токсического действия кислорода является гидроксильный радикал ОН -, самый сильный окислитель, который образуется в реакциях радиолиза воды. Он и обусловливает повреждение ферментов, мембран, нуклеиновых кислот, полисахаридов, в результате чего нарушаются метаболизм тканей и клеточное дыхание.
В настоящее время проблеме активных форм кислорода придается большое значение. Знания о свободных кислородных радикалах важны не только для фундаментальных биологических исследований, но и для практических медицинских целей.
Кроме участия в обычных окислительных реакциях, кислород может окислять вещества в результате неферментных (боковых) реакций с молекулами клетки. В этих случаях кислород также способен повреждать клеточные структуры [Абрамова Ж.И. и др., 1985].