Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Второе из двух отмеченных выше усложняющих обстоятельств состоит в том, что по мере накопления со временем все большего количества кратеров они начнут накладываться друг на друга, разрушая ранее образованные кратеры. Ясно, что в этом случае число наблюдаемых кратеров различных размеров будет меньше, чем число ударов. Такие поверхности называются насыщенными или равновесными по отношению к образованию новых кратеров. Для достаточно широкого класса распределений по размерам падающих тел (оно должно быть достаточно крутым с b > 2) равновесная популяция кратеров будет иметь показатель степени в законе распределения по размерам b ∼ 2 [Gault, 1970]. Поверхности, насыщенные кратерами, были экспериментально обнаружены на снимках Луны высокого разрешения [Shoemaker et al., 1970]. Позднее особенности достижения равновесия кратерных популяций были изучены теоретически и экспериментально [Hartmann, 1984; Hartmann and Gaskell, 1997; Woronow, 1977].

С учетом усложнений, которые обсуждались выше, для начального представления статистики лунных кратеров удобно следовать логике Хартманна, который избрал процессом, достаточно быстро обновившим большие участки лунной поверхности, излияние морских базальтов на видимой стороне Луны. Согласно имеющимся данным, базальты излились на поверхность довольно быстро (в геологическом смысле) — в интервале времени от 3,5 до 2,8 млрд лет назад образовалось почти 60 % общей площади лунных базальтовых морей [Иванов, 2005a; Hiesinger et al., 2003; Hiesinger et al., 2000; Shoemaker and Wolfe, 1982]. Распределение по размером кратеров, наложенных на поверхность лунных морей, показано на рис. 9.1 в инкрементальном виде (а) и в R-представлении (б). Для удобства использования эти данные можно выразить в аналитическом виде как зависимости числа NH кратеров на 1 км2 площади в интервалах диаметров с отношением D2/D1 = √2 в виде [Hartmann, 2005; Ivanov et al., 2001]:

lgNH = −2,61 − 3,82 lgDL, 0, 3 L < 1,41 км, (9.1)

lgNH = −2,920 − 1,80 lgDL, 1,41 L < 64 км, (9.2)

lgNH = −2,198 − 2,20 lgDL, DL > 64 км, (9.3)

где для определения интервала диаметров использовано левое (меньшее) значение граничного диаметра DL.

Для кратеров менее 300 м в диаметре для получения производящей функции нужно использовать более молодые участки поверхности, еще не успевшие насытиться постоянно образующимися новыми кратерами. Обычно на Луне такие участки находятся на покровах выбросов и днищах больших кратеров. При использовании этих данных производящее распределение по размерам можно продлить для диаметров < 300 м. Чтобы формально это продолжение соответствовало распределению на лунных морях, его можно записать в виде

lgNH = −2,0 − 2,90 lgDL, 0,01 < DL < 0,125 км. (9.4)

С таким добавлением кривая N(D) может двигаться вверх и вниз вдоль вертикальной оси для более молодых и более древних участков лунной поверхности.

Как видно из рис. 9.1, в диапазоне от метровых до километровых кратеров зависимость числа кратеров от их диаметра имеет сложную форму, лишь кусочно соответствующую простым степенным соотношениям.



Рис. 9.1. Распределение по размерам кратеров на поверхности лунных базальтовых морей в инкрементальном виде (а) и в R-представлении (б). Штриховая прямая 1 на рисунке б показывает примерный уровень «эмпирического» насыщения поверхности кратерами [Hartmann, 1984]. Рисунок первоначально был опубликован автором в работе [Neukum et al., 2001], позднее опубликован в русском варианте [Иванов, 2005a]. Сегменты степенных зависимостей (прямые участки на линии 2) соответствуют формулам (9.1) — (9.3). На рисунке б показана также штриховая линия 3, соответствующая аналитической кривой Нойкума [Ivanov, 2001; Neukum et al., 2001]


Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос