Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Туринская шкала, рассмотренная в предыдущем разделе, была разработана прежде всего для описания и распространения сведений об астероиднокометной опасности средствами массовой информации. Она проста и доступна для понимания неспециалистов. Но те упрощения, которые были сознательно допущены при ее разработке, делают шкалу малопригодной для использования в научных исследованиях. Отметим несколько таких упрощений.

Важной особенностью Туринской шкалы является то, что она целочисленная. Это облегчает восприятие оценки. Но события, относящиеся к одной и той же категории по Туринской шкале, фактически могут весьма сильно отличаться друг от друга. Например, два события, имея одинаковую вероятность, могут на два-три порядка отличаться по энергии столкновения. С другой стороны, мало отличающиеся друг от друга события могут оказаться по разные стороны границы раздела между областями и, как следствие, иметь различные категории, при этом не всегда различающиеся на единицу. Более того, в окрестности узловых точек близкие события отвечают целому набору различных категорий шкалы.

Любое событие с энергией, меньшей 1 Мт, согласно Туринской шкале, имеет категорию 0. С точки зрения не привлечения общественного внимания к подобным событиям, это оправдано. Но в научном плане отслеживание событий с меньшими значениями энергии часто представляет интерес, и надо иметь возможность оценивать такие события по их важности для научного исследования. То же самое можно сказать и в отношении событий весьма маловероятных, но сопряженных с большой энергией столкновения.

Туринская шкала предназначена для оценки событий, происходящих в течение ближайшего столетия. Формально говоря, события более отдаленного будущего не имеют определенной категории по этой шкале. Между тем, уже сейчас для некоторых астероидов достаточно точные прогнозы столкновений могут быть сделаны на существенно более длительные интервалы времени. Более того, оценка по Туринской шкале не зависит непосредственным образом от времени до предстоящего сближения: вне зависимости от того, сколько времени осталось до сближения — несколько месяцев или несколько десятков лет — по Туринской шкале это событие получает одну и ту же оценку. Фактор времени влияет лишь опосредствованно, поскольку более близкое событие привлекает, естественно, больше внимания.

Таким образом, можно отметить, что для научных целей требуется система, которая позволяла бы оценивать различные события с точки зрения создаваемой ими угрозы вне зависимости от диапазона энергии, вероятности и времени до столкновения, причем эта система должна обеспечивать непрерывность и сглаженность оценки в любом диапазоне. Справедливости ради надо отметить, что идея создания такой шкалы была в общих чертах сформулирована в работе [Binzel, 2000], посвященной описанию Туринской шкалы. Но в развитом виде подобная шкала была представлена группой докладчиков на конференции в Палермо «Asteroids 2001. From Piazzi to the Third Millennium», посвященной двухсотлетию открытия первого астероида. Поэтому данная шкала получила название Палермской [Chesley et al., 2002].

В указанной работе авторы прежде всего вводят понятие «ожидаемой энергии» события Ê, которая определяется как произведение вероятности события PI на его энергию E:

Ê = PIE. (9.11)

В том случае, когда тело несколько раз сближается с Землей на рассматриваемом интервале времени, причем каждому сближению соответствует определенная вероятность столкновения, для каждого события может быть вычислена ожидаемая энергия, и для всей последовательности событий может быть вычислена «совокупная ожидаемая энергия» как сумма ожидаемых энергий частных событий.

Далее авторы сопоставляют энергию и вероятность ожидаемого столкновения с соответствующими фоновыми значениями, обусловленными случайными столкновениями Земли с астероидами и кометами за время, остающееся до рассматриваемого события. При этом учитывается осредненная на длительном интервале времени частота столкновений. Частота падения на Землю тел с энергией, большей или равной заданному значению E, может быть определена как

ƒB = 0,03E-4/5 год-1, (9.12)

где энергия E исчисляется в мегатоннах.

Формула (9.12) выражает зависимость, очень близкую к эмпирическому распределению, найденному Е. Шумейкером главным образом на основании подсчета числа лунных кратеров [Shoemaker, 1983]. Заметим, что частоту падения тел на Землю при условии ее малости (именно с такими событиями приходится иметь дело) можно рассматривать как годичную вероятность событий.

На рис. 9.9 представлена частота столкновения Земли с космическими телами как функция энергии. Учитываются тела с энергией, большей или равной заданной величине E. Кривая линия — эмпирическое распределение, основанное преимущественно на результатах Шумейкера [Chapman and Morrison, 1994]. Прямая линия — аппроксимация, определяемая формулой (9.11). Для сравнения штриховой линией показана частота столкновений по Туринской шкале.


Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос