Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

На рис. 3.27 приведены усредненные отражательные спектры астероидов 14 классов, каждый из которых обозначен одной буквой. Спектральная кривая, обозначенная как ЕМР, является общей для трех классов Е, М и Р. Эти три класса различаются характерными для них значениями альбедо. В тех случаях, когда информация о величине альбедо отсутствует, все три класса объединяются в таксономии по Толену в один класс X. В некоторых случаях, когда тот или иной астероид бывает затруднительно отнести к определенному классу, допускается использование для его характеристики нескольких букв, чтобы указать наличие черт, характерных для соответствующих классов.

Еще с 70-х годов XX в. известно, что вид астероидных спектров в видимой области определяется тремя основными чертами: 1) наличием более или менее глубокой полосы поглощения в области, близкой к ультрафиолетовому концу спектра, обусловленной взаимодействием фотонов с ионами железа Fe2+ в кристаллической решетке вещества поверхностных слоев астероидов; 2) общим наклоном спектральной кривой в области 0,55 мкм и далее с увеличением длины волны света; наклон (подъем к красному концу спектра) или его отсутствие обусловлены наличием или отсутствием вещества, вызывающего покраснение спектра; в качестве такого вещества могут выступать металлы (Fе, Ni) или органические соединения; 3) присутствием или отсутствием полосы поглощения, обусловленной силикатами, в области от 0,7 мкм и более с минимумом обычно около 1 мкм. Все три характерные особенности спектров легко просматриваются на рис. 3.28 а. Более детальное описание таксономии по Толену содержится в табл. 3.7, заимствованной из работы [Lupishko and Di Martino, 1998]. В последней графе таблицы указываются возможные метеоритные аналоги для астероидов каждого класса. Заметим, что класс К, отсутствовавший в оригинальной работе Толена, был введен Беллом [Bell, 1988] специально для описания астероидов семейства Эос.


Рис. 3.27. Усредненные отражательные cпектры астероидов различных классов [Tholen and Barucci, 1989]


Рис. 3.28. Относительное обилие астероидов различных классов (а) и суперклассов (б) в зависимости от большой полуоси орбиты a [Bell et al., 1989]


Таблица 3.7. Классификация (таксономические классы) астероидов и метеоритные аналоги



В числе метеоритных аналогов различных классов астероидов в табл. 3.7 встречаются представители всех трех типов метеоритов: железных, состоящих в основном из железоникелевого сплава с небольшой примесью иного вещества, железокаменных, состоящих в среднем на 50 % из никелистого железа и на 50 % из силикатных минералов, и каменных, состоящих в основном из силикатных минералов с примесью никелистого железа. Минералы оливин (Mg,Fe)2SiO4 и ортопироксен (Mg,Fe)SiO3 — наиболее распространенные в метеоритах силикатные минералы, присутствующие в различных пропорциях в метеоритах почти всех типов.

Обыкновенные хондриты, углистые хондриты, базальтовые и энстатитовые ахондриты, обриты — это различные типы каменных метеоритов. Хондриты отличаются от ахондритов составом и структурой. Характерной особенностью структуры хондритов являются содержащиеся в них округлые зерна вещества — хондры, размером от долей миллиметра до долей сантиметра. По своему химическому составу хондриты гораздо ближе к химическому составу Солнца по сравнению с земной корой. Вероятно, хондриты не прошли через стадию химической дифференциации вещества, которая на Земле обеспечивалась процессами плавления, выветривания, отложения осадков и т. п.

Углистые хондриты отличаются малым удельным весом, рыхлостью, присутствием в них гидратированных минералов и органических соединений. Состав углистых хондритов близок к тому, который можно ожидать у продукта конденсации первичного околосолнечного вещества.

Ахондриты — это каменные метеориты, не содержащие в своей структуре хондр. По своему составу они сходны с земными изверженными породами, не содержащими никелистого железа.

Минералогический состав большинства выпадающих на Землю метеоритов свидетельствует о том, что они сформировались в недрах достаточно крупных тел, с характерными размерами от нескольких десятков до сотен километров. Вещество различных типов метеоритов может быть подразделено на три широких класса:

• примитивное вещество, наиболее близкое по составу к предполагаемому составу протопланетного вещества, не претерпевшее высокотемпературной диссоциации;

• вещество, подвергшееся нагреву до нескольких сотен градусов и претерпевшее при этом метаморфизм;

• вещество, подвергшееся полному или частичному плавлению, которое привело к разделению его на фракции.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос