Читаем Астероидно-кометная опасность: вчера, сегодня, завтра полностью

Наши знания о форме кометных ядер (до исследования кометы Галлея с близкого расстояния) были чрезвычайно скудны, наземные наблюдения не давали однозначного ответа. Только после того, как впервые комета Галлея была сфотографирована с близкого расстояния, были получены достоверные сведения о форме ее ядра. Оказалось, что это ядро имеет вытянутую форму. Вскоре появилась работа Джуита и Мич [Jewitt and Meech, 1988], в которой утверждалось, что вытянутая форма ядра кометы скорее правило, чем исключение. В указанной работе приводятся результаты фотометрических наблюдений ряда комет и астероидов, проведенных с использованием ПЗС-матриц, и на основании этих наблюдений проведено сравнение физических характеристик этих объектов. Сделан вывод о том, что ядра комет в среднем имеют более вытянутую форму, чем астероиды. На рис. 4.10 приведены фотографии ядер комет Галлея и Борелли (19P/Borrelly), полученные с борта космического аппарата (КА), подтверждающие предположение о вытянутой форме кометных ядер.



Рис. 4.10. а) Ядро кометы Галлея (16×8×8 км); б) ядро кометы Борелли (максимальный размер составляет ∼ 8 км) (http://www.jpl.nasa.gov/neo/images.html)


В работе [Medvedev, 1993] показано, что удлиненные кометные ядра являются естественным продуктом динамической эволюции фигуры и вращения ядра в условиях сублимации.

Здесь следует отметить, что наши знания о кометах постоянно пополняются и уточняются. Наиболее продуктивной формой исследования комет являются космические миссии к их ядрам. Кроме уже упомянутой космической миссии к комете Галлея, в последние десятилетия были проведены и проводятся несколько космических экспедиций к кометам.

Во-первых, это экспедиция Stardust, организованная НАСА. В рамках этой экспедиции исследовалась комета Вильда 2 (81P/Wild 2). Это периодическая комета c периодом обращения вокруг Солнца, равным 6,1 года. Комета была открыта относительно недавно — 6 января 1978 г. Ее открыл швейцарский астроном Пауль Вильд, работающий в Бернской университетской обсерватории. Интересна орбита этой кометы, точнее ее эволюция. 9 сентября 1974 г. комета имела очень тесное сближение с Юпитером; в этот момент комета сблизилась с Юпитером на расстояние 0,006 а.е. В результате этого сближения орбита кометы изменилась. Если до сближения с Юпитером комета двигалась по орбите с перигелийным расстоянием, равным 5 а.е., то в результате сближения комета была переброшена на орбиту с перигелийным расстоянием, равным 1,5 а.е. На рис. 4.11 приведены орбиты кометы Вильда 2 до и после сближения с Юпитером.

2 января 2004 г. КА проекта Stardust пролетел на расстоянии 236 км от ядра кометы. Ядро кометы Вильда 2 оказалось неправильной формы. На изображениях кометы имеются остроконечные пики высотой 100 м и кратеры глубиной более 150 м. Размеры ядра равны 1,65 × 2,00 × 2,75 км (приведенные значения соответствуют осям ядра при аппроксимации его трехосным эллипсоидом). Размер самого большого кратера, получившего название «Left Foot» («Левая ступня») из-за своеобразной формы, равен 1 км, что составляет пятую часть всего диаметра ядра кометы. Немного меньший размер имеет другой кратер, названный «Right Foot» (см. рис. 4.12 на вклейке).


Рис. 4.11. Эволюция орбиты кометы Вильда 2 (рисунок подготовлен с помощью «Электронного каталога орбит комет» [Бондаренко, 2009])


Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Большое космическое путешествие
Большое космическое путешествие

Основой этой книги стал курс Принстонского университета, который читали гуманитариям три знаменитых астрофизика – Нил Деграсс Тайсон, Майкл Стросс и Джон Ричард Готт. Они рассказывают о том, что любят больше всего, и рассказывают так, что самые сложные теории становятся понятны неспециалистам.Астрономы не привыкли усложнять то, что может быть простым. Большие красные звезды – это красные гиганты. Маленькие белые звезды – это белые карлики. Если звезда пульсирует, она называется пульсар. Даже начало всего пространства, времени, материи и энергии, что существуют в космосе, можно назвать всего двумя простыми словами: Большой Взрыв.Что мы знаем о Вселенной? Наша Вселенная велика. Наш Космос гораздо больше, чем кажется. Он жарче, чем вы думаете. Плотнее, чем вы думаете. Разреженнее, чем вы думаете. Что бы вы ни думали о Вселенной, реальность все равно окажется невероятнее.Добро пожаловать во Вселенную!

Дж. Ричард Готт , Майкл А. Стросс , Нил Деграсс Тайсон

Астрономия и Космос