Однако небесные события не считаются с удобствами человеческой сетчатки. Напротив, они, как правило, испускают одновременно разное количество света в разных диапазонах. Так что без телескопов с детекторами, настроенными на весь спектр, астрофизики пребывали бы в блаженном неведении о некоторых феерических космических явлениях.
Возьмем, к примеру, взрывающуюся звезду – сверхновую. Это достаточно распространенное во Вселенной высокоэнергичное событие, сопровождающееся обильным выбросом рентгеновского излучения. Иногда такие взрывы сопровождаются вспышками гамма-лучей и ультрафиолета, да и видимого света сверхновая дает в изобилии.
Взорвавшийся газ успевает давно остыть, ударные волны рассеиваются, видимый свет тускнеет, а компактный «остаток» сверхновой продолжает светиться в инфракрасном диапазоне и испускать радиоимпульсы. Вот откуда берутся пульсары – самые надежные хронометры во Вселенной.
Большинство взрывов сверхновых происходят в далеких галактиках, но если бы взорвалась какая-нибудь звезда в пределах Млечного Пути, ее агония сопровождалась бы таким ярким светом, что все увидели бы ее даже без телескопа. Хотя никто на Земле не наблюдал незримых рентгеновских или гамма-лучей от последних двух фейерверков, которые сверхновые устроили на территории нашей Галактики – в 1572 и 1604 годах, – есть много свидетельств об их невероятном видимом свете.
Диапазон длин волн (или частот), составляющий каждую полосу спектра света, сильно влияет на конструкцию устройств, которые его регистрируют. Вот почему невозможно подобрать такое сочетание телескопа с детектором, которое одновременно уловило бы все особенности подобных взрывов. Однако обойти эту проблему несложно: соберите все наблюдения интересующего вас объекта (можно позаимствовать результаты у коллег) во всех диапазонах света. А потом поставьте в соответствие интересующим вас невидимым полосам спектра видимые цвета и создайте одно мета-изображение, охватывающее все полосы. Именно это видит Джорди Ла Форж из телесериала «Звездный путь: Следующее поколение». Расширив таким образом диапазон своего зрения, вы ничего не упустите.
Большинство взрывов сверхновых происходят в далеких галактиках, но если бы взорвалась какая-нибудь звезда в пределах Млечного Пути, ее агония сопровождалась бы таким ярким светом, что все увидели бы ее даже без телескопа.
Сначала нужно определить, какая именно полоса вызывает вашу астрофизическую симпатию, и уже потом можно начинать думать о размерах зеркала, о том, из каких материалов его делать, о том, какой оно должно быть формы и с какой поверхностью, и о том, какой понадобится датчик. Например, волна рентгеновского излучения очень короткая. Поэтому, чтобы уловить его, нужно супергладкое зеркало, иначе его дефекты исказят картину. Но если нужно уловить длинные радиоволны, зеркало можно сделать хоть из проволочной сетки, согнув ее вручную, поскольку дефекты сетки будут гораздо меньше длин волн, которые вас интересуют. Разумеется, вам нужно увидеть все детали вашего объекта, то есть наблюдать его с высоким пространственным разрешением, так что зеркало должно быть как можно больше – насколько вы можете себе позволить. Наконец, ваш телескоп должен быть гораздо больше длины волны света, который вы собираетесь уловить. Это особенно заметно, когда речь идет о радиотелескопах.
Радиотелескопы, первые в истории телескопы для наблюдения невидимого света, – диковинный подвид обсерваторий. Первый действующий радиотелескоп создал американский инженер Карл Янский в 1929–1930 годах. Это устройство немного напоминало передвижной ороситель для автоматизированного полива. Оно держалось на высоких прямоугольных металлических подпорках, скрепленных деревянными перекрестьями и снабженных лесами, и вертелось на месте, как карусель на колесиках. Янский использовал и запасные части от недорогого автомобиля «Жестяная Лиззи», он же «Форд-Т». Свою тридцатиметровую конструкцию Янский настроил на длину волны около 15 метров, что соответствует частоте 20,5 мегагерц. (Все волны подчиняются простой формуле: скорость = частота × длина волны. Если при постоянной скорости увеличиваешь длину волны, частота волны снизится – и наоборот, так что при умножении этих двух величин скорость всегда получается одна и та же. Этот закон справедлив для света, звука и даже фанатов на стадионах, делающих «волну», в общем, для всех бегущих волн.)
Карл Янский
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное