Читаем Астрономы наблюдают полностью

В 1941 году известный советский оптик член-корреспондент Академии наук СССР Д. Д. Максутов изобрел новый тип зеркально-линзового телескопа, свободного от главного недостатка камер Шмидта. В системе Максутова (рис. 25, справа), как и в системе Шмидта главное зеркало имеет сферическую вогнутую поверхность. Однако вместо сложной коррекционной линзы Максутов использовал сферический мениск — слабую рассеивающую выпукло-вогнутую линзу, сферическая аберрация которой полностью компенсирует сферическую аберрацию главного зеркала. А так как мениск слабо изогнут и мало отличается от плоскопараллельной пластинки, хроматическую аберрацию он практически не создает.

Заметьте, в системе Максутова все поверхности зеркала и мениска сферические, что сильно облегчает их изготовление. Центральная часть мениска посеребрена и используется как второе отражательное зеркало в системе Кассегрена. Из-за этого максутовские телескопы получаются сравнительно короткими, компактными, удобными в обращении. В инструментах такого типа можно использовать и ньютоновскую систему и систему Грегори.

В 1950 году менисковый телескоп с диаметром входного отверстия 0,5 м был установлен на Алма-Атинской обсерватории и с его помощью изучена тонкая структура волокнистых газовых туманностей. Пять лет спустя менисковый телескоп диаметром 0,7 м начал работать в Грузии на Абастуманской обсерватории. Этот телескоп может работать по двум системам — ньютоновской и кассегреновской, причем переход от одной системы к другой осуществляется сменой дополнительных зеркал. Кстати сказать, такая «многосистемность» применяется в большинстве современных крупных рефлекторов. Абастуманский рефлектор системы Максутова до сих пор остается крупнейшим в мире инструментом этого типа.

Упорная борьба с аберрациями привела в конце концов к созданию очень сложных зеркально-линзовых систем. Так, например, в камерах «Супершмидт», созданных Ф. Уипплом, кроме главного сферического зеркала используются два мениска, обращенных вогнутостями друг к другу и ахроматизирующая коррекционная линза между ними. В систему, разработанную Г. Г. Слюсаревым, входят сферическое зеркало, кассегреновское зеркало и ахроматическая линза, которые дают параллельный пучок в отверстие главного зеркала. Имеется в ней и дополнительная система линз с призмой прямого зрения. Крупнейший 13-дюймовый телескоп этой сложной системы работает в Пулковской обсерватории. Можно быть уверенным, что совершенствование зеркально-линзовых систем на этом не прекратится.

Заметим в заключение, что в последнее время большую популярность приобрели зеркальные телескопы системы Ричи — Кретьена. По существу, эта система представляет собой улучшенный вариант кассегреновской. Главное зеркало — вогнутое гиперболическое, вспомогательное зеркало также гиперболическое выпуклое. Окулярная часть укрепляется в центральном отверстии главного зеркала.

В системе Ричи-Кретьена исправлена сферическая и некоторые другие аберрации. Она удобна в конструктивном отношении, так как при большом фокусном расстоянии труба телескопа получается короткой. С помощью системы Ричи-Кретьена удобно получать крупномасштабные снимки небесных объектов, причем поле зрения у этой системы порядка четырех градусов.

Телескопы системы Ричи-Кретьена поперечником 4 м в последние годы установлены в США, Чили, ФРГ, Канаде, Австралии и других странах. В современной астрономической практике они считаются одними из лучших.

<p>Механика телескопов</p>

Как бы ни был совершенен телескоп сам по себе, без штатива или установки работать с ним невозможно. Даже подзорную трубу стараются на что-нибудь опереть — дрожание рук сильно мешает наблюдениям.

Первые телескопы имели азимутальные штативы, которые позволяли поворачиваться трубе телескопа вокруг двух взаимно перпендикулярных осей — горизонтальной и вертикальной. Такими азимутальными установками пользовались и Гевелий, и Гершель и даже Росс, причем, как, вероятно, помнит читатель, подвижность по азимуту россовского левиафана была весьма ограниченной. Простота азимутальной установки, к сожалению, сочетается и с ее главным недостатком: так как у небесных светил, обладающих кажущимся суточным движением, непрерывно меняются и азимут и высота над горизонтом, телескоп на азимутальной установке все время приходится поворачивать вокруг двух ее осей, что для больших инструментов до последнего времени считалось очень неудобным.

Если вертикальную ось азимутальной установки сделать параллельной земной оси, то есть, иначе говоря, направить ее на Полярную звезду (или, точнее, на полюс мира), азимутальная установка превращается в параллактическую (рис. 26). В этом случае во время наблюдений приходится вращать инструмент лишь вокруг одной «полярной» оси — все небесные светила ведь движутся на небе параллельно небесному экватору. Это главное и очень важное преимущество параллактической или экваториальной установки сделало ее очень популярной — даже самые небольшие телескопы ныне снабжены параллактическим штативом.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже