Левое из них лежит в основном в области видимых лучей — от ультрафиолетовых до инфракрасных. К сожалению, атмосфера Земли совершенно непрозрачна для лучей, длина волны которых меньше 290 миллимикрон. Между тем в далеких ультрафиолетовых областях спектра расположены спектральные линии многих химических элементов. Мы их не видим, и поэтому наши сведения о химическом составе небесных тел далеко не полны.
В последнее время астрономы пытаются вырваться за границы воздушной оболочки Земли и увидеть космос, так сказать, в «чистом виде». И это им удается. Высотные ракеты и воздушные шары выносят спектрографы и другие приборы в верхние, весьма разреженные слои атмосферы, и там автоматически фотографируется спектр Солнца.
Начато изучение этим способом и других астрономических объектов.
Другой край «оптического окна» атмосферы упирается в область спектра с длиной волны около микрона. Инфракрасные лучи с большей длиной волны сильно поглощаются главным образом водяными парами земной атмосферы.
Много тысячелетий астрономы изучали Вселенную только через одно узкое «оптическое окно» атмосферы.
Они не подозревали, что есть еще другое «окно», гораздо более широкое. Оно лежит в области радиоволн.
Левый край «радиоокна» отмечен ультракороткими радиоволнами длиной 1,25
Радиоволны, длина которых меньше 1,25
Радиоволны, длина которых больше 30
Для некоторых радиоволн слой ионизованного газа подобен зеркалу — радиоволны отражаются от него как солнечный луч от поверхности воды. Поэтому приходящие на Землю из космоса радиоволны с длиной волны больше 30
«Радиоокно» гораздо шире «оптического окна». На рисунке 38 по горизонтальной оси отложена так называемая логарифмическая шкала длин, то есть единицы масштаба вдоль этой оси есть единицы степени числа 10. Если же иметь дело с числами, а не с их логарифмами, то ширина «радиоокна» (около 30
Естественно ожидать, что широко распахнутое в космос «радиоокно» покажет нам Вселенную еще более многообразной и сложной.
Если излучение небесного тела по длине волны подходит для «радиоокна», оно практически беспрепятственно достигает земной поверхности, и задача астрономов состоит в том, чтобы уловить и исследовать каким-то способом это излучение.
Для этого и созданы радиотелескопы.
Радиотелескопы и рефлекторы
Вспомним, как устроен телескоп-рефлектор. Лучи, посылаемые небесным телом, падают на вогнутое параболическое зеркало и, отражаясь от его поверхности, собираются в фокусе рефлектора. Здесь получается изображение небесного тела, которое рассматривается через сильную лупу — окуляр телескопа. Маленькое второе зеркало, отражающее лучи в сторону окуляра, имеет чисто конструктивное, а не принципиальное значение.
Роль главного зеркала здесь достаточно ясна. Оно создает изображение небесного тела, и это изображений будет наилучшим в том случае, когда небесное тело находится на продолжении оптической оси телескопа. Говоря проще, телескоп в таком случае направлен прямо на наблюдаемый объект.
Приемником излучения в телескопе-рефлекторе служит человеческий глаз или фотопластинка. Чтобы увеличить угол зрения и подробно рассмотреть изображение светила, приходится пользоваться промежуточным устройством — окуляром.
Итак, в телескопе-рефлекторе есть собиратель излучения — параболическое зеркало и приемник излучения — глаз наблюдателя или фотопластинка.
По такой же схеме устроен, в сущности, и простейший радиотелескоп (рис. 39). В нем космические радиоволны собирает металлическое зеркало, иногда сплошное, а иногда решетчатое.
Форма зеркала радиотелескопа, как и в рефлекторе, параболическая. Конечно, и здесь сходство не случайное — только параболическая (или, точнее, параболоидная) поверхность способна собрать в фокусе падающее на нее электромагнитное излучение.