Читаем Атака на неизведанное полностью

Возрастающее с глубиной погружения давление воды повышает давление и плотность дыхательных газов. Более плотный, а следовательно, и более тяжелый дыхательный газ даже на глубинах около 40 м сильно влияет на органы дыхания водолаза. Так как объем легких практически не изменяется, а давление на каждые 10 м водяного столба увеличивается на 1 атм, на глубине 10 м требуется уже вдвое больше воздуха, приведенного к нормальному давлению, на глубине 20 м — втрое больше и т. д.

Опытный водолаз потребляет в непосредственной близости от поверхности примерно от 25 до 30 л воздуха в минуту. При содержании кислорода, составляющем 21 %, в легкие каждую минуту попадает около 6 л кислорода. Однако потребляется и при выдыхании выделяется в виде углекислого газа только около 22,5 % этого количества, т. е. всего 4,7 % вдыхаемого воздуха. Так как выдыхаемый воздух в аппаратах с открытой циркуляцией выходит непосредственно в воду, дыхательные газы в них используются неудовлетворительно.

Плавучие автономные водолазные аппараты на сжатом воздухе могут работать ограниченное время. Поэтому недавно была начата разработка аппаратов с подачей воздуха с водной поверхности. В противоположность шлемовидному водолазному аппарату здесь сохранялась маневренность легкого водолаза, хотя наличие шланга ограничивало пространственный радиус действия.

Однако по-прежнему водолаз испытывал косвенные влияния давления. Это, во-первых, уже упомянутое выше насыщение тканей тела инертными газами, такими, как азот, в результате чего при быстром всплытии наступает кессонная болезнь, а во-вторых, токсичные воздействия повышенного парциального давления отдельных составных частей дыхательного газа.

Опасность выделения азота из тканей может быть предотвращена ступенчатой декомпрессией при всплытии. Медленное всплытие и остановки на определенных горизонтах постепенно освобождают тело от избытка азота. Для ступенчатой декомпрессии составлены таблицы подъема. В них имеются данные о времени пребывания на каждой ступени в зависимости от глубины погружения, времени нахождения под водой, а также от общей продолжительности всплытия.

Таким образом, наряду с сильно возрастающей потребностью в воздухе, связанной с повышенным давлением воды, время, необходимое для декомпрессии, ограничивает возможности автономных водолазов. При погружении менее чем на 10 м необходимость в декомпрессии отпадает. На глубинах от 10 и примерно до 45 м возможно всплытие без ступеней декомпрессии, если при погружении соблюдались определенные перерывы, так называемые «нулевые периоды». С увеличением глубины нулевые периоды становятся все короче. Так, общее время для погружения и пребывания на глубине 35 м составляет только около 10 мин.

При более длительном пребывании под водой соблюдение ступеней декомпрессии становится обязательным. Если погружение на глубину 45 м продолжается 35 мин, то для подъема требуется уже более часа. Еще менее благоприятно соотношение между временем погружения и эффективным рабочим временем для больших глубин. Пребывание в течение 1 мин на глубине 200 м требует на декомпрессию свыше 12 ч. Таким образом, практически на таких глубинах никакие работы не возможны.

Поэтому в 1957 г. был разработан и в 60-х годах успешно применен принцип «погружения насыщением» (Sattigungstauchens). Этот принцип основан на том, что необходимое для декомпрессии время прямо зависит от количества растворенного в организме азота или другого инертного газа. Как известно, это количество зависит от давления и от времени погружения. Однако растворенное количество газа возрастает не неограниченно, так как в конце концов достигается насыщение тканей тела. По новейшим научным данным для полного насыщения всех тканей азотом требуется около 64 ч. При использовании гелия, применение которого целесообразно при погружениях на глубины большие 50 м, для насыщения нужно примерно 24 ч. Если насыщение тканей достигнуто, время декомпрессии остается постоянным, независимо от того, как долго длилось пребывание под водой.

Практически этот принцип осуществляется так: водолазы перед спуском вдыхают в барокамере газовую смесь под давлением, зависящим от предстоящей глубины погружения. После насыщения они под этим давлением в погружаемой камере доставляются к месту работы. Спустя несколько часов водолазы возвращаются в камеру и все еще под давлением поднимаются на поверхность. На борт рабочего судна они чаще всего принимаются в барокамере большего размера и здесь ожидают следующего погружения. После окончания работ, часто продолжающихся несколько дней, в барокамере на палубе судна производится декомпрессия. Принцип погружения насыщением является весьма выгодным при длительных работах под водой, так как соотношение между полезным временем погружения и временем декомпрессии значительно сокращается.

Перейти на страницу:

Похожие книги

100 великих тайн Земли
100 великих тайн Земли

Какой была наша планета в далеком прошлом? Как появились современные материки? Как возникли разнообразные ландшафты Земли? Что скрывается в недрах планеты? Научимся ли мы когда-нибудь предсказывать стихийные бедствия? Узнаем ли точные сроки землетрясений, извержений вулканов, прихода цунами или падения метеоритов? Что нас ждет в глубинах Мирового океана? Что принесет его промышленное освоение? Что произойдет на Земле в ближайшие десятилетия, глобальное потепление или похолодание? К чему нам готовиться: к тому, что растает Арктика, или к тому, что в средних широтах воцарятся арктические холода? И виноват ли в происходящих изменениях климата человек? Как сказывается наша промышленная деятельность на облике планеты? Губим ли мы ее уникальные ландшафты или спасаем их? Велики ли запасы ее полезных ископаемых? Или скоро мы останемся без всего, беспечно растратив богатства, казавшиеся вечными?Вот лишь некоторые вопросы, на которые автор вместе с читателями пытается найти ответ. Но многие из этих проблем пока еще не решены наукой. А ведь от этих загадок зависит наша жизнь на Земле!

Александр Викторович Волков

Геология и география