Читаем Атака на неизведанное полностью

Намечается применение подводных лабораторий и в области морской техники. Они могли бы, например, оказывать ценную помощь при разработке и испытаниях измерительной и рабочей аппаратуры или при длительном исследовании коррозии. И все же в настоящее время, в противоположность общей позитивной оценке относительно применения подводных станций в океанографии, мнения об их пользе в решении технических задач еще расходятся. Многие технические работы по обслуживанию и ремонту подводных установок должны проводиться в сравнительно короткое время. Применение подводных станций для таких задач было бы слишком дорогостоящим, тем более что они привязаны к определенному месту, тогда как подъемные установки и другие устройства на морском дне могут быть распределены по большим площадям. Суда и барокамеры, в которых водолазы после выполненной работы снова поднимаются на поверхность, более экономичны. С другой стороны, для решения некоторых задач подводные суда с устройствами для всплытия водолазов считаются более дешевыми и эффективными. Но и здесь еще не сказано последнего слова.

<p>Проникновение на максимальные глубины</p>

Несмотря на успешное использование водолазов для решения технических и научных задач под водой, все же для непосредственного наблюдения таким способом доступна лишь небольшая область водной оболочки нашей планеты. Как мы видели, шельф, т. е. примыкающая к континенту часть морского дна с глубинами до 200 м, занимает только 27,4 млн. кв. км. Это составляет всего 7,6 % Мирового океана. 77 % Мирового океана имеет глубины большие, чем 3000 м, а свыше половины всего океана — даже большие 4000 м. Погружение водолазов на эти глубины в ближайшем будущем, вероятно, будет невозможно. Однако давно уже стремились к тому, чтобы с помощью технических средств доставлять людей на большие глубины. За последние 20 лет в этом направлении достигнуты значительные успехи.

В первых экспериментах наблюдатели в несжимаемых контейнерах опускались на стальных тросах. Они дышали из запасных баллонов воздухом при нормальном атмосферном давлении, и выдыхаемый воздух, с помощью соответствующих химических средств, избавлялся от углекислоты и от влажности, в то время как стальная броня погруженного резервуара защищала водолаза от давления водяного столба.

В 1914 г. итальянец Галацци начал модернизацию своей водолазной башни путем выведения из водолазного колокола закрытого со всех сторон цилиндрического тела. В 1930 г. он достиг в нем глубины 210 м. Эта легко эксплуатируемая башня после второй мировой войны была использована его сыном в совместной работе с итальянским институтом рыболовства для научных наблюдений в Средиземном море, причем в 1950 г. он достиг глубины 650 м.

Следует упомянуть также создание в 1924 г. немецким инженером Галлем «панцирного водолаза». Водолазный костюм состоял из отдельных стальных колец, соединенных друг с другом водонепроницаемыми шарнирами. Обеспечение воздухом производилось в режиме замкнутой циркуляции с генерацией кислорода. Аппарат весом 400 кг был снабжен щипцеобразным захватом. Он применялся только на глубинах около 200 м, преимущественно при спасательных работах. В случае опасности погруженный на тросе водолаз мог быстро подняться, опорожнив вмонтированный в его костюм бак для воды.

Но самыми известными были погружения в батисфере, «глубинном шаре», около Бермудских островов, которые, начиная с 1930 г., предпринимал американский зоолог Биби [10]совместно с инженером Бартоном. Шар имел внутренний диаметр 1,37 м и толщину обшивки от 32 до 35 мм. С помощью паровой лебедки он опускался в море с парома, с которым был связан прочным тросом, телефонным и электрическим кабелями. Установленный в батисфере прожектор позволял вести наблюдения из бортового иллюминатора на глубинах, куда не проникал свет. При первом спуске акванавты достигли глубины 240 м, а в июне 1934 г. им удался долгое время не превзойденный рекордный спуск на глубину 923 м.

В 1948 г. Бартон, с помощью усовершенствованной батисферы, осуществил у берегов Калифорнии погружение на глубину 1372 м. Но и при этих погружениях обнаружились недостатки в методике. Так, с одной стороны, судно-носитель поднималось и опускалось при волнении, а с другой — из-за эластичности стального троса колебания испытывала и батисфера, и все время грозила опасность, что эти колебания попадут в резонанс и трос оборвется.

Несмотря на эти недостатки, батисферы применяются и в настоящее время, так как они позволяют проводить наблюдения на глубинах в несколько сотен метров при сравнительно небольших затратах.

Перейти на страницу:

Похожие книги

100 великих тайн Земли
100 великих тайн Земли

Какой была наша планета в далеком прошлом? Как появились современные материки? Как возникли разнообразные ландшафты Земли? Что скрывается в недрах планеты? Научимся ли мы когда-нибудь предсказывать стихийные бедствия? Узнаем ли точные сроки землетрясений, извержений вулканов, прихода цунами или падения метеоритов? Что нас ждет в глубинах Мирового океана? Что принесет его промышленное освоение? Что произойдет на Земле в ближайшие десятилетия, глобальное потепление или похолодание? К чему нам готовиться: к тому, что растает Арктика, или к тому, что в средних широтах воцарятся арктические холода? И виноват ли в происходящих изменениях климата человек? Как сказывается наша промышленная деятельность на облике планеты? Губим ли мы ее уникальные ландшафты или спасаем их? Велики ли запасы ее полезных ископаемых? Или скоро мы останемся без всего, беспечно растратив богатства, казавшиеся вечными?Вот лишь некоторые вопросы, на которые автор вместе с читателями пытается найти ответ. Но многие из этих проблем пока еще не решены наукой. А ведь от этих загадок зависит наша жизнь на Земле!

Александр Викторович Волков

Геология и география