9.25. Электролитический метод разделения изотопов основан на том открытии, что вода в электролитических ваннах, применяемых в обычном промышленном производстве водорода и кислорода, имеет повышенную концентрацию молекул тяжелой воды. Полного объяснения этого явления еще нет. Всю продукцию тяжелого водорода до войны практически получали электролитическим методом. Наибольшее количество производилось в Норвегии, но в достаточных для многих экспериментальных целей количествах тяжелый водород получался и в США.
9.26. Описанные выше шесть методов разделения изотопов (диффузия, перегонка, центрифугирование, термодиффузия, изотопный обмен и электролиз) были испытаны с известным успехом либо на уране, либо на водороде, либо на обоих веществах. Каждый из этих методов основан на небольших различиях в среднем поведении молекул различных изотопов. Так как средние величины, по определению, являются предметом статистики, то все методы. зависящие в основном от среднего поведения, называются статистическими методами.
9.27. С точки зрения критериев, установленных для суждения о процессах разделения, все шесть статистических методов довольно схожи. В каждом случае коэффициент разделения невелик, так что требуется много последовательных ступеней разделения. В большинстве случаев на установках среднего размера может быть переработано относительно большое количество вещества. Загрузка и пусковой период (время установления равновесия) значительно колеблются, но обычно высоки. Сходство шести методов исключает возможность окончательного выбора метода без предварительного подробного изучения данного изотопа, требуемой производительности и т. д. Реакция обмена и электролитические методы вероятно непригодны в случае урана; точно так же никакая схема перегонки себя не оправдала. Остальные три метода были разработаны с различным успехом для урана, но не применяются для водорода.
ЭЛЕКТРОМАГНИТНЫЙ МЕТОД И ПРЕДЕЛЫ ЕГО ПРИМЕНИМОСТИ
9.28. Существование нерадиоактивных изотопов впервые было доказано при изучении ионизованных молекул газа, движущихся в электрическом и магнитном полях. Это — поля, которые являются основой так называемого масс-спектрографического или электромагнитного метода разделения изотопов. Электромагнитный метод является наиболее подходящим для определения относительного содержания (распространенности) изотопов. Он обычно применяется для проверки результатов разделения изотопов урана
методами, описанными выше. Ценность электромагнитного метода заключается в том, что с его помощью легко произвести почти полное разделение изотопов, очень быстро, с малой загрузкой и с коротким пусковым периодом. Чтобы ответить на вопрос, почему же тогда рассматриваются любые другие методы разделения, достаточно напомнить, что обычный масс-спектрограф может разделять лишь ничтожные количества вещества, обычно порядка долей микрограмма в час.
9.29. Чтобы понять причину такой ограниченной производительности, мы опишем в общих чертах принцип действия простого масс-спектрографа, впервые употреблявшегося А.Дж. Демпстером в 1918 г. Прибор изображен схематически на рис. 5. Разделяемое газообразное соединение вводится в пространство, где часть его молекул ионизуется электрическим разрядом. Некоторые из ионов проходят через щель S1
Между S1 и S2 они ускоряются электрическим полем, которое сообщает им всем практически одинаковую кинетическую энергию, в тысячи раз большую средней тепловой энергии. Так как теперь все ионы обладают практически одинаковыми кинетическими энергиями, то более легкие ионы должны иметь меньшее количество движения, чем более тяжелые. Попадая в магнитное поле через щель S2, все ионы движутся (перпендикулярно магнитному полю) по полуокружностям с радиусами, пропорциональными их количествам движения. Поэтому легкие ионы будут двигаться по меньшей полуокружности, чем тяжелые, и, если поместить коллектор в соответствующее положение, будут собраны только легкие ионы.9.30. Оставляя в стороне детальное рассмотрение прибора, мы отметим лишь главные причины, лимитирующие количества разделяемого вещества. Эти причины состоят в следующем: во-первых, трудно получить большие количества газообразных ионов; во-вторых, берется очень узкий пучок ионов (как показано на рисунке), так что используется только часть полученных ионов: в-третьих, слишком большие плотности ионов в пучке могут вызвать эффект объемного заряда, который мешает разделению.