1.53. 16 января 1939 года Нильс Бор (Копенгаген, Дания) прибыл в США, чтобы провести несколько месяцев в Принстоне (Нью-Джерси); он с нетерпением ждал случая обсудить некоторые теоретические вопросы с А. Эйнштейном. (Четыре года спустя Бор вынужден был бежать из оккупированной нацистами Дании на маленьком пароходе). Как раз перед тем, как Бор покинул Данию, двое из его сотрудников О. Р. Фриш и Л. Мейтнер (оба эмигранты из Германии) поделились с ним своей догадкой о том, что поглощение нейтрона ядром урана иногда вызывает расщепление этого ядра на две приблизительно равные части, сопровождающееся освобождением колоссальных количеств энергии; этот процесс стал вскоре называться «делением» ядра. Поводом для этой гипотезы послужило важное открытие О. Гана и Ф. Штрасмана в Германии (опубликовано в первых числах января 1939 г. в журнале
На конференции Бор и Ферми обсуждали проблему деления, и, в частности, Ферми упомянул, что могут испускаться нейтроны. Хотя это было лишь догадкой, из нее с очевидностью вытекала возможность цепной реакции. По вопросу о делении в печати был опубликован ряд сенсационных статей. Прежде чем конференция в Вашингтоне закончилась, было предпринято несколько других экспериментов, чтобы подтвердить наличие деления ядер, и в четырех лабораториях (Колумбийский университет, Институт Карнеги в Вашингтоне, Университет Джона Гопкинса, Калифорнийский университет) это было экспериментально подтверждено, о чем сообщалось в
С тех пор непрерывный поток научных докладов о делении ядер не прекращался, так что к тому времени, когда Тэрнер написал большую обзорную статью на эту тему (6 декабря 1939 г.), напечатанную в
1.54. Рассмотрим предположение Фриша и Мейтнер в свете двух главных закономерностей, обнаруженных в строении ядра: во-первых, относительное число нейтронов в ядре возрастает с атомным номером; во-вторых, энергия связи, отнесенная к частице, достигает максимума для ядер с промежуточными атомными номерами. Допустим, что ядро U-238 распалось точно пополам (рис. 2); тогда, пренебрегая массой первоначального нейтрона,
мы получим два ядра с атомным номером 46 и массовым числом 119. Самый тяжелый устойчивый изотоп палладия (Z=46) имеет массовое число лишь 110. Следовательно, чтобы достигнуть устойчивости, два воображаемые новые ядра должны выбросить девять нейтронов, превратившись в ядра 46Pd110; или четыре нейтрона в каждом ядре должны превратиться в протоны, испуская электроны, тем самым образуя устойчивые ядра олова с массовым числом 119 и атомным номером 50; могут осуществиться и другие какие-либо комбинации этих испусканий и превращений, дающие некоторые новые пары устойчивых ядер. В действительности, как показали Ган и Штрасман на примере бария (Z=56, A= от 135 до 140), как продукта деления, расщепление происходит таким образом, что получаются две неравные части с массовыми числами около 140 и 90, с испусканием нескольких нейтронов и последующим радиоактивным распадом путем испускания электронов, которое не прекращается до тех пор, пока не образуются устойчивые ядра. Вычисления на основании данных об энергии связи показывают, что всякая такая перегруппировка дает общую результирующую массу, значительно меньшую, чем первоначальная масса ядра урана, и таким образом должно освободиться большое количество энергии.