4.14. Опыты над коэффициентом размножения похожи на описанные выше опыты по определению η
— числа нейтронов, испускаемых на один поглощенный тепловой нейтрон. Радие-бериллиевый источник нейтронов помещается у основания решетки, и измеряется число нейтронов в различных точках решетки. Затем эти числа сравниваются с соответствующими числами, полученными в отсутствии урана в массе графита. Очевидно, поглощение нейтронов ураном-238 с превращением его в уран-239 приводит к уменьшению числа нейтронов, в то время как деление урана увеличивает это число. Возникает вопрос: что преобладает? или, более точно, преобладает ли освобождение нейтронов в процессах деления над всеми процессами поглощения нейтронов? Истолкование экспериментальных данных по этому решающему вопросу сопровождалось введением многих поправок, вычислениями и приближениями, но в конце концов все сводилось к единственному числу — коэффициенту размножения k.КОЭФФИЦИЕНТ РАЗМНОЖЕНИЯ
4.15. Успех или неудача решения всей проблемы урана зависели всецело от коэффициента размножения k
называемого иногда коэффициентом воспроизведения. Если k удастся сделать более единицы в практически действующей системе, проект окажется успешным; если же нет, то цепная реакция окажется не более, как фантазией. Это ясно из следующего рассуждения, применимого к любой системе, содержащей материал, подверженный делению. Предположим, что в данный момент в системе имеется определенное число свободных нейтронов. Некоторые из этих нейтронов сами вызовут деление и будут таким образом непосредственно производить новые нейтроны. Коэффициент размножения k есть отношение числа этих новых нейтронов к числу первоначально имевшихся свободных нейтронов. Пусть в котле, содержащем уран, углерод, примеси, коробки и т. д., делением произведены 100 нейтронов; некоторые из них вылетят из котла, некоторые будут поглощены ураном и не вызовут деления, некоторые будут поглощены углеродом, материалом коробки или примесями и лишь некоторые из этих 100 нейтронов вызовут деление, производя тем самым новые нейтроны (см. рис. 2 на стр. 36). Если делений достаточно много и каждое из них в отдельности достаточно эффективно, то будет произведено более 100 новых нейтронов, и система обеспечит развитие цепной реакции. Если число новых нейтронов 105, то k=1,05. Но если число новых нейтронов на 100 начальных равно 99, то k=0,99, и цепная реакция невозможна.4.16. Мы отдавали себе отчет в том, что описанный выше промежуточный или «экспоненциальный» эксперимент имел слишком малый масштаб для получения цепной реакции. Поэтому представляет весьма большой интерес знать, будет ли происходить цепная реакция в котле более крупных размеров, но с решеткой той же конструкции. Это можно было определить рассчитав, какое значение получит k
для неограниченно большой решетки того же типа. Задача состояла в том, чтобы вычислить, каково было бы значение k если бы сквозь стенки котла не происходило никакой диффузии нейтронов. Фактически теперь установлено, что если система, в которой происходит цепная реакция, в достаточной мере превосходит критические размеры, например, в два или три раза, — и окружена так называемым рефлектором, то эффективное значение k очень мало отличается от значения k для бесконечных размеров, при условии, что k близко к 1,00. Поэтому, способность разных смесей урана с замедлителем давать цепную реакцию обычно характеризуют значением коэффициента размножения, полученным в предположении котла бесконечно больших размеров.4.17. Значение последнего, согласно отчету Ферми на заседании Секции урана осенью 1941 года, было около 0,87. Такое значение основывалось на результатах, полученных из второго промежуточного эксперимента в Колумбии. Все считали, что коэффициент размножения можно увеличить путем увеличения химической чистоты материалов, различных усовершенствований решетки и т. д., но никто не мог утверждать с достоверностью, что k
можно будет сделать большим единицы.ОПЫТЫ С БЕРИЛЛИЕМ
4.18. Примерно в то же время, когда были начаты работы по изучению резонансного поглощения в Принстоне, С.К. Алисон, по предложению А.X. Комптона, начал в Чикаго работу по договору, действовавшему в период с 1 января по 1 августа 1941 г. Работа преследовала две цели: (а) изучение увеличения возникновения нейтронов в том случае, когда котел окружен бериллиевой оболочкой или «рефлектором», и (b) исследование поперечных сечений взаимодействия нейтронов с бериллием. 18 июля 1941 г. был заключен новый договор сроком до 30 июня 1942 г. Здесь была поставлена несколько более широкая цель — общее исследование систем уран-бериллий-углерод. Отпущенные ассигнования были скромны: 9500 долларов на первый контракт и 30 000 долларов — на второй.