Явление, открытое Лауэ, Фридрихом и Книппингом, позволяет убить сразу двух зайцев:
1) исследовать внутреннюю структуру кристаллов, т. е. определить весь строй кристаллической решётки, в которой располагаются атомы, твёрдого тела;
2) измерить длину волны рентгеновских лучей.
Над обеими задачами работали многие физики, и в настоящее время мы знаем расположение атомов в ряде кристаллов так же хорошо, как если бы мы видели эти атомы собственными глазами. Измерение же длины волны рентгеновских лучей достигло совершенно исключительной точности. Ограничимся немногими примерами.
Рис. 6. Расположение атомов в кристалле поваренной соли.
На рис. 6 представлено пространственное расположение атомов в кристалле поваренной соли. Тёмные и белые шарики изображают атомы натрия и атомы хлора. И те и другие атомы образуют кубическую решётку; обе решётки как бы вдвинуты друг в друга. При этом отмеченная на рисунке длина равна 2,814•10-8 см. Ни один атом натрия не связан с каким-нибудь одним атомом хлора в молекулу, изолированную от всех остальных частиц; поэтому уместно сказать, что весь кристалл поваренной соли представляет одну гигантскую молекулу. Такие же сведения были добыты и о громадном количестве других кристаллических тел. Заметим также, что многие тела, которые до тех пор считались аморфными (не кристаллическими), оказались «микрокристаллическими»: их кристаллы слишком малы, чтобы быть обнаруженными каким-нибудь иным путём, и только рентгеновские лучи дают возможность их исследовать.
Приведём также несколько числовых данных, относящихся к длине волны рентгеновских лучей. Методы рентгеновской спектроскопии позволяют измерять длину волны лучей примерно в промежутке от 0,1 A до 15 A. (Значком A обозначается единица длины — ангстрем. Один ангстрем равен 10-8 см.) Точность, с которой можно измерить длину волны характеристических рентгеновских лучей (см. ниже), совершенно потрясает: после работ шведского учёного Зигбана она достигла одной стотысячной доли ангстрема, т. е. 10-13 см.
Рис. 7. Рентгеновский спектрограф.
Длина волны рентгеновских лучей раз в тысячу меньше, чем длина волны лучей видимых: так, например, кальций имеет в видимом спектре линию с длиной волны 3933,83 A, а длина волны его наиболее жёсткой характеристической рентгеновской линии (см. ниже) равна 3,36169 A. Из этих чисел видно, насколько широк тот спектр частот электромагнитных колебаний, с которым приходится иметь дело физику: начиная с волн длиною в несколько километров, улавливаемых радиоприёмником, он простирается до рентгеновских лучей с длиной волны в несколько стомиллионных долей сантиметра. В дальнейшем мы увидим, что существуют волны ещё более короткие.
За блестящим открытием Лауэ последовали работы английских физиков У. Г. Брэгга и У. Л. Брэгга (отца и сына), которые придумали способ фотографировать спектры рентгеновских лучей. Построенный ими рентгеновский спектрограф (рис. 7) имеет следующее устройство. Лучи рентгеновской трубки, выделенные в узкий пучок, падают на кристалл и затем, отражаясь от него, на фотографическую плёнку. Кристалл может вращаться, причём с поворотом его меняется, конечно, и угол, под которым рентгеновские лучи падают на грань, параллельную оси вращения кристалла. Поэтому при поворачивании кристалла процессу отражения подвергаются всё новые и новые волны, в результате чего на фотографической плёнке разворачивается спектр рентгеновских лучей. Исследование по методу Брэггов спектра рентгеновских лучей, получаемых от обыкновенной рентгеновской трубки, показывает, что кроме непрерывного фона, т. е. лучей с самыми разнообразными и непрерывно меняющимися длинами волн, в спектре присутствуют ещё отдельные резкие линии, выделяющиеся на этом непрерывном фоне. Положение этих линий зависит от того вещества, из которого состоит поверхность антикатода; совокупность этих линий называется характеристическим спектром того химического элемента, которому принадлежат эти «характеристические» рентгеновские линии.