Читаем Атомы и электроны полностью

Из того, что радон принадлежит к группе благородных газов, отказывающихся соединяться и между собою, и с какими угодно другими веществами, следует, что на него можно распространить все те законы, которые оказались справедливыми для остальных благородных газов. В частности, можно утверждать (всё это было хорошо проверено на остальных благородных газах), что молекула радона состоит только из одного атома радона и что его атомная масса может быть вычислена из его плотности (атомные массы всех благородных газов пропорциональны их плотности). Поэтому перед Рамзаем встала задача — взвесить крохотное, почти незаметное количество радона, бывшее в его распоряжении, чтобы определить его плотность, а значит, и атомную массу.

Эту трудную задачу Рамзай и его помощник Уайтлоу-Грей разрешили следующим образом. Они построили специальные «микровесы», чувствительность которых превосходила всё, что когда-либо было известно в истории измерительного искусства. Крохотное количество эманации радия было введено в пустой и очень лёгкий кварцевый шарик, который был подвешен к одному концу легчайшего кварцевого же коромысла весов. К другому концу был подвешен кварцевый противовес, приблизительно уравновешивавший кварцевый шарик с радоном. Для того чтобы точно уравновесить весы, Рамзай и Уайтлоу-Грей пользовались не добавочными разновесками или чем-нибудь в этом роде; а поставили микровесы под стеклянный колпак и стали менять с помощью насоса давление воздуха под этим колпаком. По закону Архимеда всякое тело, погружённое в газ, теряет в своём весе столько, сколько весит газ, занимающий такой же объём. А так как кварцевый шарик с радоном имел больший объём, чем кварцевый противовес, то он больше терял в весе, чем противовес, и это становилось тем ощутимее, чем плотнее был газ под колпаком. Поэтому Рамзай и его помощник могли управлять своими весами, не прибегая к помощи разновесок: хотят они, чтобы противовес опустился, а шарик с радоном поднялся, — для этого нужно только ещё подкачать насосом под колпак воздух; а чтобы шарик с радоном опустился, а противовес пошёл вверх, следует насосом немножко откачать воздух из-под колпака. С помощью этих остроумных «весов без разновесок» Рамзай и Уайтлоу-Грей сумели довольно точно взвесить свой шарик с радоном, а значит, и вычислить атомную массу радона. Когда измерения и вычисления были закончены, то в результате получилось, что атомная масса радона почти точно равна 222, т. е. тому самому числу, которое предсказали Резерфорд и Содди.

Резерфорд и Содди торжествовали победу. Теперь уже никто не мог отрицать, что их разгадка радиоактивности правильна и что атом радия действительно распадается на атом радона и атом гелия. Начиналась новая эпоха в истории физики и химии. Наряду с обыкновенными химическими реакциями, которые изображаются формулами, где справа и слева стоят те же самые атомы, но только в разных комбинациях, теперь физики и химики должны были рассматривать и такую реакцию: Ra->Rn+He.

В какой ужас пришёл бы старый Берцелиус, если бы ему показали такую химическую формулу!

Из всего того, о чём говорилось на предыдущих страницах, читатель может заключить, что гипотеза Резерфорда и Содди о радиоактивном распаде атома радия на атомы радона и гелия несомненно верна. Не может быть неверной гипотеза, которая подвергалась такому суровому испытанию и так блестяще его выдержала. Но Резерфорд счёл нужным подвергнуть её ещё и другому испытанию: он захотел определить непосредственно на опыте, чему равен заряд отдельной альфа-частицы. Ведь из догадки Резерфорда и Содди о сущности радиоактивности вытекает, что заряд альфа-частицы должен равняться двойному элементарному заряду: это обязательно должно быть верным, если альфа-частица есть заряженный атом гелия и если отношение e/m для неё, как показывает опыт, в два раза меньше такого же отношения, вычисленного для водородного иона. Но как это проверить? Альфа-частица — это атом гелия или, лучше сказать, ион гелия. Не слишком ли самонадеянны физики, вознамерившиеся поймать один-единственный атом гелия и измерить его электрический заряд? Не значит ли это — попытаться войти в мир бесконечно малого, в мир невидимого, в мир ускользающего от наших органов чувств?

И всё же эта смелая попытка удалась. Физики действительно смогли увидеть невидимое. Первый, кому это удалось, был сэр Уильям Крукс. Для того чтобы совершить это чудо, он совсем не строил грандиозных и сложных приборов, при виде которых всякий неучёный человек начинает чувствовать себя нехорошо, — он соорудил совсем крохотный и пустяковый приборчик стоимостью рубля в полтора. И с помощью этого приборчика он смог увидеть отдельные атомы.

Перейти на страницу:

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг