Повара избегают таких проблем, используя жаростойкое боросиликатное стекло под торговой маркой Pyrex. В принципе это обычное стекло, только в его состав добавляется около 13 % оксида бора, который придает ему характерный голубоватый цвет. Это своеобразный «сплав». Оксид бора позволяет ему расширяться в объеме при нагревании на треть больше, чем обычному стеклу, и на треть же больше уменьшаться при охлаждении. Поэтому аморфная атомная структура такого стекла испытывает меньшее напряжение, чем у обычного, и оно более устойчиво к температурным колебаниям[108]
.Почему стекло такое тяжелое?
Если вы видели, как рабочие устанавливают стекла в витринах магазинов, этот вопрос наверняка приходил вам в голову. После многолетних размышлений над этой проблемой я пришел к выводу, что причины этого явления отчасти физические, но в значительно большей степени психологические.
Стекло, хотя бы в каком-то смысле, – твердое тело. Объем листа стекла размером 2 × 3 м и толщиной 2 см составляет 0,12 м³, или 120 л. Легко представить себе, сколько будут весить 120 литровых бутылок с водой (примерно 120 кг, то есть вдвое больше средней массы человека). Стекло же – твердое вещество, а не жидкость. Если бы лист таких же размеров был бы сделан из металла, то он имел бы массу около 1 т (1 м³ стали имеет массу 8 т). Стоит ли удивляться, что стекло такое тяжелое! При равном объеме вес листового стекла – где-то посередине между льдом и металлом[109]
. Например, наш лист стекла должен иметь массу около 300 кг, то есть столько же, сколько четыре-пять взрослых мужчин.Удивляться же весу стекла нас заставляет психология. Поскольку оно прозрачно и не похоже ни на что на Земле, мы воспринимаем его как нечто
Почему мы можем видеть сквозь стекло?
За тысячи лет до того, как появился пластик – дешевая имитация стекла, – стекло было единственным материалом, через который можно было наблюдать мир (разумеется, за исключением нескольких других природных объектов, таких как вода или крылышки стрекозы). И по сей день стекло остается единственным прозрачным материалом на планете. Прозрачность определяется тем, что сквозь него может проходить свет. Но почему он не может проходить через другие материалы, например металлы?
Дело не в толщине слоя вещества. Тонкие листы бумаги могут пропускать свет, но они не прозрачны (не позволяют вам увидеть то, что происходит за ними). Очень тонкая папиросная бумага позволяет вам опознать объект, на который она положена, но не даст возможности увидеть объект, находящийся на расстоянии, потому что частично отражает свет (под углом, равным углу падения света), частично пропускает его и частично рассеивает (под случайными углами, делая фокусированное распространение света невозможным). Существует алюминиевая фольга толщиной всего 0,2 мм (тоньше тончайшей бумаги). Но сквозь нее вы ничего не можете увидеть.
Прозрачность или светопроницаемость материалов определяется тем, как они взаимодействуют со светом, который пытается проникнуть сквозь них. Металлы легко поглощают частицы падающего на них света, которые называются фотонами, а также некоторые виды излучения неоптического диапазона, например рентгеновские лучи (подробнее об этом речь пойдет в главе 10
). Атомы металлов окружены облаками свободных электронов, которые легко поглощают фотоны света и эффективно обмениваются ими. Схожую картину мы можем наблюдать, когда игроки ловят мяч и отбрасывают его сопернику. Блестящие металлы вроде алюминия и серебра отражают фотоны всех оптических частот (видимых цветов), при этом частично поглощая их энергию и нагреваясь. Именно поэтому алюминий и серебро используются при производстве зеркал. Цветные металлы, например медь и золото, отражают фотоны на одних частотах, но поглощают (или проводят) на других. Например, медь отражает фотоны красного спектра, но поглощает другие спектры – от желтого и зеленого до голубого и фиолетового.