Читаем Авария на ЧАЭС и атомная энергетика СССР (СИ) полностью

При этом температура внутри разрушенного блока, скорее всего, была бы ограничена температурой горения графита, то есть, в районе полутора тысяч градусов или чуть выше, но выше бы не поднималась. Установилось бы некоторое такое равновесие. Следовательно, топливо, таблетки окиси урана, могли бы расплавиться и не давать дополнительного источника радиоактивных частиц. Но этот многодневный вынос радиоактивности с продуктами горения, конечно, привел бы к тому, что огромные территории оказались бы интенсивно заражены различными радионуклидами. Радиационная обстановка предполагала какие-то эффективные действия. Но их представлялось возможным производить только с воздуха и с высоты не менее чем 200 метров над реактором, а соответствующей техники, которая позволяла бы, скажем, традиционно с помощью воды и пены и других средств завершить гашение графита, не было.


Надо было искать нетрадиционные решения — и мы начали думать об этих нетрадиционных решениях. Нужно сказать, что наши размышления сопровождались постоянными консультациями с Москвой, где у аппарата ВЧ постоянно находился, скажем, Анатолий Петрович Александров. Активно участвовал в наших рассуждениях целый ряд сотрудников Института атомной энергии, сотрудники Министерства энергетики. Каждая служба — например, пожарные по своей части — держали соответствующую связь со своими Московскими организациями. Уже на второй день пошли различные телеграммы, предложения. Из-за рубежа предлагали вообще разные варианты воздействия на горящий графит с помощью различных смесей.


Логика принятия решения была такая. Прежде всего, нужно было ввести столько, сколько можно, боросодержащих компонентов, которые при любых перемещениях топливной массы, при любых неожиданных ситуациях, обеспечили бы в кратере разрушенного реактора достаточно большое количество эффективных поглотителей нейтронов. К счастью, на складе оказалось незагрязненным достаточно большое количество (40 тонн) карбида бора, который и был прежде всего с вертолетов сверху заброшен в жерло разрушенного реактора.


Таким образом, первая задача — задача введения нейтронного поглотителя максимального размера и количества — была выполнена быстро и оперативно.


Вторая задача — задача, связанная с введением таких средств, которые стабилизировали бы температуру, заставляя энергию, выделяющуюся при распаде мощной топливной массы, затрачиваться на фазовые переходы. Первое предложение, которое, скажем, мне пришло в голову и которое было мною предложено, — забросать в реактор максимальное количество железной дроби. На станции ее было достаточно большое количество. Это железная дробь, которая вводится обычно в бетон при строительстве, чтобы сделать его тяжелым. Но оказалось, что склад, на котором эта железная дробь хранилась, во-первых, был накрытым проходящим первичным облаком после взрыва, и работать с сильно зараженной дробью было практически невозможно. Во-вторых, нам не была известна температура, при которой возможно стабилизировать процесс. Скажем, если там средне-массовая температура была бы существенно меньше, чем температура плавления железа, тогда введения железа с этой целью было бы недостаточно. По крайней мере, потому, что мы пропустили бы момент возможной стабилизации температуры на более низком уровне. Поэтому в качестве таких стабилизаторов температуры были предложены и после многочисленных консультаций и обсуждений выбраны два компонента: свинец и доломит. Первый — ясно: он плавится при низкой температуре. Во-первых, легкоплавкий металл. Во-вторых, обладает некоторой способностью экстрагировать радиоактивные элементы. В-третьих, он способен, застывая, относительно в холодных местах создавать защитный экран от гамма-излучения. И поэтому это решение — правильное. Конечно, оставалась опасность того, что температуры существенно более высокие, то заметная часть свинца может испариться и где-то там при обыкновенной температуре 1600–1700°, и тогда в дополнение к радиоактивному загрязнению может возникнуть свинцовое загрязнение местности, и с эффективной стороны роли этот компонент не сыграет.


Поэтому группа из Донецка, принадлежащая Министерству энергетики Украины, была отдана в мое распоряжение. Они располагали шведской фирменной (фирмы «Ада») техникой, тепловизорами, начали постоянные облеты четвертого блока, фиксируя температуру поверхности. Задача была непростая потому, что датчиками в этих тепловизорах служат полупроводники, и нужно было ухитриться правильно интерпретировать результат, имея в виду, что мощное гамма-излучение, попадающее на полупроводник, существенно искажало результаты измерения. Поэтому я предложил наряду с вот такими тепловизорными измерениями температуры 4-го блока, производимыми с воздуха, дополнить эти измерения с земли прямыми термопарными измерениями.


Эту операцию осуществлял Евгений Петрович Рязанцев вместе с вертолетчиками. На длинных фалах опускали термопары. Это тоже была непростая работа — измерить температуру поверхности.


Перейти на страницу:

Похожие книги

Россия подземная. Неизвестный мир у нас под ногами
Россия подземная. Неизвестный мир у нас под ногами

Если вас манит жажда открытий, извечно присущее человеку желание ступить на берег таинственного острова, где еще никто не бывал, увидеть своими глазами следы забытых древних культур или встретить невиданных животных, — отправляйтесь в таинственный и чудесный подземный мир Центральной России.Автор этой книги, профессиональный исследователь пещер и краевед Андрей Александрович Перепелицын, собравший уникальные сведения о «Мире Подземли», утверждает, что изучен этот «параллельный» мир лишь процентов на десять. Причем пещеры Кавказа и Пиренеев, где соревнуются спортсмены-спелеологи, нередко известны гораздо лучше, чем подмосковные или приокские подземелья — истинная «терра инкогнита», ждущая первооткрывателей.Научно-популярное издание.

Андрей Александрович Перепелицын , Андрей Перепелицын

География, путевые заметки / Геология и география / Научпоп / Образование и наука / Документальное