Казалось бы простая конструкция, но отрабатывалась на «Нитке» в течение почти двух лет. Если на аэродроме поломка гака или разрыв троса к аварии не приведёт, то на корабле это наверняка катастрофа. Самолет выкатится за пределы посадочной полосы — и окажется за бортом, в море вместе с пилотом. Поэтому вс отрабатывалось очень тщательно: и конструкция, и конфигурация гака, и прочность штанги и конструкции, воспринимающих усилия в самом самолёте, кинематика устройства и прочее. Очень важно было изучить и отработать вопросы взаимодействия гака и троса, чтобы не повредить или даже не перерубить трос. В процессе испытаний на «Нитке» это случалось много раз. Ещё раз повторяю, что на корабле это недопустимо, так как последствия могут быть катастрофическими.
Кроме того, зацепления самолёта за приёмный трос могли быть внецентренными или косыми. Ясно, что в этом случае трос скользит по гаку, создавая поперечные нагрузки на штангу.
Все эти вопросы отрабатывались на «Нитке» действующим самолётом на действующем аэрофинишере. Сначала на малых скоростях, буксируя самолёт тягачом, затем путем прокатки самолёта собственной тягой, постепенно увеличивая скорость и так до посадочной.
В результате была создана конструкция гака, внешне похожая на переднюю часть копыта лошади.
Несмотря на всю тщательность проверок проблемы всё-таки были.
В 1990 году на госиспытаниях корабля и ЛКИ самолётов при осмотре Су-27К механики обнаружили сквозную трещину проушины штанги, но проушина вильчатая, вторая половина осталась целой. Катастрофа была близкой.
МиГ-29К при посадках на корабль много раз повреждал трос. Су-27 в два раза тяжелее, но повреждений троса не было. Как-то на палубе были сразу оба самолёта, и я предложил главному конструктору завода Хотлубею вместе пойти на палубу и попросту визуально сравнить гаки «Су» и «МиГ». Через 5 минут всё стало ясно. «Копыта» МиГ имели чуть притуплённую, но острую нижнюю кромку. У «Су» нижняя кромка была плавно закруглена радиусом 15-20 мм. Если «МиГ» при посадке нижней кромкой «копыта» ударял в трос, то он выходил из строя и подлежал замене.
Я потребовал у испытателей доработать гак «МиГа» аналогично «Су». Но у конструкторского бюро им. Микояна много амбиций и пустого гонора, начались неделовые споры, поэтому я был вынужден прекратить полёты МиГов на корабль. Больше МиГ-29К до конца испытаний на пробном выходе корабля на палубе не появлялся. Описанный случай с гаком МиГ-29К произошел в ноябре 1989 года.
Заканчивая писать свои воспоминания, я просматривал свой блокнот с рабочими заметками, и в заметках о совещании в Минавиапроме у заместителя министра В. Л. Максимовского 6 сентября 1989 года я обнаружил страстное выступление Главного конструктора МиГ-29К М. Р. Вальденберга о том, что обрыв тросов при посадке на палубу корабля — это очень серьёзно. Комментарии излишни.
Думаю, что надо описать устройство и принцип действия аэрофинишеров. В России это был первый опыт, — они были использованы только на «Нитке» и на корабле заводской № 105. Люди не знают, что это такое, но многие интересовались. Первое, что приходило им на ум, что приёмный трос под палубой соединён с мощными пружинными или даже резиновыми амортизаторами. На самом деле аэрофинишер или тормозная машина — это большая сложная машина, работающая в очень тяжелых условиях с точки зрения нагрузок и скоростей, одновременно обладающая абсолютной надёжностью. Габариты машины (18×2×1,5) м, вес ок. 100 тонн.
Тормозная машина работает на принципе объёмного вытеснения рабочей жидкости из тормозного гидроцилиндра через клапан управления в пневмогидроаккумулятор.
Основными элементами машины являются тормозной гидроцилиндр (диаметр 495 мм) и шток-поршень (рабочий ход 5800 мм). На торце гидроцилиндра закреплена неподвижная каретка с двумя рядами девятишкивных блоков диаметром ок. 800 мм. Такие же два девятишкивных блока установлены на подвижной каретке, закрепленной на свободном конце шток-поршня.
Приёмный трос (он сменный) соединен муфтами с двумя тормозными тросами, которые через систему отводных блоков запасованы на девятиштоковые блоки в 18 лопарей. В результате такой запасовки образуется двухсекционный полиспаст с передаточным отношением 18:1.
Самолет при посадке на палубу корабля захватывает своим гаком натянутый поперек посадочной полосы приёмный трос и, продолжая движение по палубе, вытягивает ветви тормозных тросов. Тормозные тросы через полиспастную систему приводят в движенце шток-поршень, который перемещаясь вытесняет жидкость из тормозного гидроцилиндра через клапан управления в пневмогидроаккумулятор.
Клапан управления имеет обратную связь со шток-поршнем тормозной машины. Обратная связь через профилированный кулачок обеспечивает программированное закрытие клапана к концу торможения. Этим поддерживается в тормозном гидроцилиндре необходимое давление рабочей жидкости, которое через шток-поршень и полиспастную систему организует соответствующее усилие торможения самолёта на всём пути его пробега по палубе корабля.