2. На высоте 2100–2200 м барометрический предохранитель включает радиовысотомеры и цепь зарядки высоковольтного конденсатора подрыва по схеме: аккумулятор — инвертор — трансформатор — выпрямитель — конденсатор.
3. На высоте 500–600 м при срабатывании двух из четырёх радиовысотомеров, блок автоматики подрыва разряжает конденсатор на электродетонатор пушечного заряд
4. В случае полного отказа всех вышеперечисленных систем, бомба взрывается от обычного взрывателя, при ударе о землю.
Расчетный тротиловый эквивалент (ТЭ) «Малыша» составлял от 10 до 15 кт.
На изготовление первой атомной бомбы, сброшенной 6 августа 1945 г. на Хиросиму, ушёл практически весь полученный к тому времени оружейный уран, поэтому полигонные испытания бомбы не проводились, тем более, что работоспособность её несложной и хорошо отработанной конструкции сомнений не вызывала. Вообще разработка и доводка «Малыша» были практически закончены к концу 1944 г., и его применение задерживалось только отсутствием необходимого количества урана-235. Обогащённый уран с большими трудностями был получен только в июне 1945 г.
По разрушениям в Хиросиме была проведена приблизительная оценка мощности бомбы, которая реально составляла 12–15 кт тротилового эквивалента. Количество урана, вступившего в реакцию деления, не превышало 1,3 %.
На производство 1 кг урана-235 80 % обогащения по технологии 1945 г. требовалось около 600000 кВт-ч электроэнергии и более 200 кг природного урана, соответственно один «Малыш» с урановым зарядом массой 60 кг обходился в 36000 МВт- ч энергии, более 12 т урана и полтора месяца непрерывной работы промышленного гиганта в Ок-Ридже. Именно из-за неэкономичного использования крайне дорогостоящих делящихся материалов, ядерные заряды пушечного типа, впоследствии, были почти полностью вытеснены имплозивными.
После войны история «Малыша» не закончилась. Между августом 1945 г. и февралем 1950 г. было изготовлено пять урановых бомб типа Mk.I, все они были сняты с вооружения уже в январе 1951 г. Вновь о «Малыше» вспомнили, когда флоту США потребовалась малогабаритная атомная бомба для разрушения сильно защищённых целей. Модернизированный вариант «Малыша» получил обозначение Мк.8 и состоял на вооружении с 1952 по 1957 гг.
Другой путь создания атомной бомбы базировался на использовании плутония. Основная трудность в создании плутониевой бомбы заключалась в свойствах самого плутония. Он делится интенсивнее, чем уран, поэтому критическая масса для плутония существенно меньше, чем у урана (11 кг для 239Ри и 48 кг для 235U). Плутоний радиоактивен и ядовит, поэтому при работах с ним нужно использовать средства защиты.
Металлический плутоний имеет малую прочность, в диапазоне температур от комнатной до температуры плавления проходит шесть модификаций строения кристаллической решётки, с разной плотностью и подвергается интенсивной коррозии на открытом воздухе. Кроме того, он постоянно выделяет тепло, которое необходимо отводить. Для преодоления этих черт, детали из плутония приходится легировать другими металлами и наносить защитные покрытия.
Как было сказано ранее, критическое состояние можно получить не только быстрым сближением двух масс (для плутония этот путь не выгоден, в силу ряда причин), но и путём увеличения плотности подкритической массы делящегося материала. Плутоний для этого подходил лучше, чем уран.
Из школьного курса физики мы знаем, что твёрдые тела и жидкости несжимаемы. Для повседневной жизни — это действительно так. Но если приложить ОЧЕНЬ большое давление, то твёрдое тело (кусок плутония) можно сжать. Тогда он достигнет критического состояния, и произойдёт ядерный взрыв. Достичь этого давления можно с помощью взрыва обычной взрывчатки.
Для этого нужно ядро из плутония поместить в сферу из обычного взрывчатого вещества (ВВ). По всей поверхности взрывчатки расположить детонаторы и одновременно их подорвать. Тогда внешняя поверхность сферы будет разлетаться в стороны, а детонационная волна пойдёт внутрь и сожмёт ядерный заряд.
Практически осуществить мы это не можем — ведь невозможно на поверхности сферы разместить огромное количество детонаторов. Решением проблемы стала нетривиальная идея имплозии (Implosion) — взрыва, направленного вовнутрь, предложенная Сетом Неддермейером. Процесс взрыва нам кажется мгновенным, но на самом деле процесс детонации ВВ происходит во фронте детонационной волны, которая распространяется в взрывчатке со скоростью 5200…7800 м/с. Для разных сортов взрывчатки скорость детонации разная.