Каталог форматов содержит все определенные для ввода/вывода форматы файлов. Имена модулей _csv.py, _tsv.py, _json.py, _yaml.py, _xls.py, _xlsx.py, _ods.py и _xls.py начинаются с нижнего подчеркивания — это указывает пользователю библиотеки, что свойства не предназначены для непосредственного использования. Мы можем перейти в каталог formats и выполнять поиск классов и функций. Команда grep ^class formats/*.py показывает отсутствие определений классов, а команда grep ^def formats/*.py — что каждый модуль содержит одну или несколько следующих функций:
• detect(stream) определяет формат файла, основываясь на содержимом потока;
• dset_sheet(dataset, ws) форматирует клетки для таблиц Excel;
• export_set(dataset) экспортирует набор данных в заданный формат, возвращая отформатированную строку в новом формате (для Excel возвращает объект bytes или бинарную строку в Python 2);
• import_set(dset, in_stream, headers=True) заменяет содержимое набора данных содержимым входного потока;
• export_book(databook) экспортирует объекты Datasheet в Databook в заданном формате, возвращая объект типа string или bytes;
• import_book(dbook, in_stream, headers=True) заменяет содержимое databook содержимым входного потока.
Это примеры применения модулей как пространств имен (в конце концов, они же являются отличной штукой) для разделения функций вместо того, чтобы использовать ненужные классы. Мы узнаем предназначение каждой функции по ее имени, например formats._csv.import_set(), formats._tsv.import_set() и formats._json.import_set() импортируют наборы данных из файлов в формате CSV, TSV и JSON соответственно. Другие функции отвечают за экспорт данных и определение формата файла (где это возможно) для каждого доступного Tablib формата.
Tablib — наша первая библиотека, в которой используется синтаксис декораторов Python, описанный в подразделе «Декораторы» раздела «Структурируем проект» главы 4. Синтаксисом предусмотрено указывать символ @ перед именем функции, вся конструкция размещается над другой функцией. Декоратор изменяет (или декорирует) функцию, которая находится под ним. В следующем фрагменте кода свойство изменяет функции Dataset.height и Dataset.width, делая их дескрипторами — классами, в которых определен хотя бы один из следующих методов: __get__(), __set__() или __delete__() (геттер, сеттер и метод удаления). Например, поиск атрибута Dataset.height приведет к срабатыванию функции-геттера, сеттера или удаления в зависимости от контекста применения атрибута. Такое поведение присуще только новым классам (их мы вскоре обсудим). Для получения более подробной информации о дескрипторах обратитесь к довольно полезному руководству по Python по адресу https://docs.python.org/3/howto/descriptor.html.
Так выглядят атрибуты height и width при использовании:
>>> import tablib
>>> data = tablib.Dataset()
>>> data.header = ("amount", "ingredient")
>>> data.append(("2 cubes", "Arcturan Mega-gin"))
>>> data.width
2
>>> data.height
1
>>>
>>> data.height = 3
Traceback (most recent call last):
····File "
AttributeError: can't set attribute
Доступ к data.height можно получить так же, как и к любому другому атрибуту, но изменить его значение вы не можете — оно высчитывается на основе данных и всегда актуально. Такой дизайн API весьма эргономичен: конструкцию data.height проще ввести на клавиатуре, чем data.get_height(); понятно, что означает data.height. Поскольку значение этого свойства выводится на основе данных (значение свойства нельзя задать, для него определена только функция-геттер), можно не переживать, что значение свойства рассинхронизируется с реальными данными.
Декоратор свойства можно применить только к атрибутам классов и только к тем классам, которые наследуют от base object object (например, class MyClass(object), а не class MyClass() — в Python 3 всегда выполняется наследование от объекта).