Скорость восстановления рыбных запасов непостоянна, она зависит от количества рыбы в конкретной области — а точнее, от плотности скопления рыб (то есть их количества на кубометр). Если плотность слишком высокая, то темпы возобновления близятся к нулю из-за ограничений в доступности питания и в среде обитания. Когда плотность снижается, начинается ее восстановление, которое происходит ускоренными темпами, поскольку в экосистеме увеличивается объем свободного пространства и б
В этой упрощенной модели системы рыболовецкой отрасли прослеживаются три нелинейные зависимости: от цены (чем меньше рыбы, тем ее добыча дороже); скорости восстановления (если популяция рыбы мала, она медленно восстанавливается, как и в случае с чрезмерно большой популяцией) и величины добычи на единицу капитала (эффективность технологий и способов рыбной ловли).
Такая система показывает разные типы поведения. Один из них графически представлен на рисунке 43.
Рис. 43. Ежегодный улов (А) приносит прибыль, стимулирующую рост капитала (Б), но даже после небольшого выхода за предельный уровень улова объем быстро стабилизируется. В результате стабилизация улова приводит к постоянству запаса ресурса (В)
Как следует из графиков, приведенных на рисунке 43, сначала капитал и объемы улова растут экспоненциально. Сокращается популяция рыбы (запас ресурса), но это стимулирует скорость ее восстановления. На протяжении десятилетий ресурс может поддерживать экспоненциальный рост улова. Со временем объемы добычи увеличиваются, а популяция рыбы снижается настолько, что рыбная ловля становится экономически нецелесообразной. Балансирующий цикл обратной связи, проявляющийся в уменьшении объема выловленной рыбы и, как следствие, в снижении прибыли, вскоре приведет к тому, что объем инвестиций в производственный капитал также уменьшится, что, в свою очередь, обеспечит условия, при которых количество рыболовецких судов станет соответствовать текущим запасам рыбы. Флот не может расти бесконечно, но у него получится сколь угодно долго поддерживать улов на высоком и стабильном уровне.
Даже незначительное изменение в силе влияния балансирующего цикла обратной связи на объем добычи на единицу капитала может приводить к удивительным последствиям. Предположим, что рыболовецкая компания пытается повысить улов, применяя новые технологии (например, гидролокаторы для поиска истощенных запасов рыбы). В этом случае снижение величины популяции будет происходить быстрее, но возможность поддерживать тот же уровень улова будет сохраняться более длительное время (рис. 44).
Рис. 44. Небольшое увеличение улова на единицу капитала (в данном случае за счет прорыва в технологии добычи) вызывает сначала рост, а затем колебания значений темпов добычи (А) и производственного капитала (Б) вблизи некоторой величины; величина запасов ресурса (В) сначала уменьшается, а затем также начинает колебаться вблизи некоторого значения
Приведенные на рисунке 44 графики показывают, как работает принцип рычага там, где его наличие только во вред! Применение новых технологий добычи рыбы, которые, по идее, должны увеличить улов, приводит систему к нестабильности. Начинаются колебания.
При совершенствовании технологий лов рыбы с приемлемой рентабельностью будет возможен даже при очень низкой плотности ее популяции. В результате как рыба, так и рыболовецкая отрасль окажутся на грани исчезновения. Море превратится в морскую «пустыню». Такой подход, несмотря на видимую практичность, приведет к тому, что запасы рыбы станут невозобновляемым ресурсом. Развитие такого сценария иллюстрируют графики на рисунке 45.
Рис. 45. Существенное увеличение улова на единицу капитала приводит к выходу системы за пределы и последующему падению: темпов добычи (А), производственного капитала (Б) и запасов ресурса (В)