Читаем Азбука звездного неба. Часть 2 полностью

С помощью телескопов с апертурой 50-75 мм удается наблюдать разнообразные явления, связанные с прохождением спутников по диску планеты и за ним. Наряду с прохождением спутников по диску планеты видно также перемещение по диску их теней. Попадая в тень Юпитера, спутники исчезают — происходит их затмение; при заходе за Юпитер спутники исчезают — наблюдается покрытие спутников планетой. Раз в шесть лет плоскость орбит спутников проходит через Землю, в это время удается наблюдать покрытия и затмения спутников друг другом. Эти явления интересны не только сами по себе, но и с научной точки зрения, поэтому при наблюдениях важно очень точно фиксировать моменты наступления и окончания соответствующих событий. Даже в самые крупные телескопы не удается разглядеть какие-либо детали на поверхности спутников, но их вид на фоне планеты неизменно поражает наблюдателя.

Сатурн

Сатурн со своей необычной и очень эффектной системой колец представляет собой не менее удивительную картину, чем Юпитер. При изучении Сатурна применяют те же методы, что и при изучении Юпитера. На нем заметны темные полосы и светлые зоны, но довольно редко удается увидеть более мелкие детали. Отчасти это объясняется удаленностью планеты; однако, согласно последним данным, отсутствие мелких видимых деталей в основном связано с тем, что внешние слои протяженной атмосферы Сатурна ослабляют свет, идущий от темных образований в более глубоких облачных слоях. Именно в силу этого обстоятельства очень важно исследование довольно редких, случайно возникающих на поверхности планеты темных и светлых деталей.


Рис. 115. Явления, наблюдаемые в системе спутников Юпитера.


Рис. 116. На фотографии Ганимеда, полученной с борта космического аппарата «Галилео», можно различить значительно больше деталей, чем при наблюдении с Земли.


Рис. 117. Пояса, зоны и полярные области Сатурна.

Обозначения: ЮПО — Южная полярная область; ЮУЗ — Южная умеренная зона; ЭЗ — Экваториальная зона; СУЗ — Северная умеренная зона; СПО — Северная полярная область; ЮЮУП — Юго-южный умеренный пояс; ЮУП — Южный умеренный пояс; ЮЭП — Южный экваториальный пояс; ЭП — Экваториальная полоса; СЭП — Северный умеренный пояс; ССУП — Северо-северный умеренный пояс; ЮЮУЗ — Юго-южная умеренная зона; ЮТЗ — Южная тропическая зона; СТЗ — Северная тропическая зона; ССУЗ — Северо-северная умеренная зона.


Противостояния Сатурна повторяются через 378 дней, величина видимой фазы планеты может достигать 6°. Наиболее заметно изменяется вид колец Сатурна. Кольца настолько тонкие (их средняя толщина, вероятно, меньше 100 м), что дважды в течение сатурнианского года, т.е. один раз примерно в 15 лет, когда Земля проходит через плоскость, в которой расположены кольца, они временно исчезают. Кольца лежат в плоскости, совпадающей с экваториальной плоскостью планеты, и наклонены к эклиптике под углом около 28°. Поэтому по мере появления и исчезновения колец наблюдениям становится доступна большая часть то одного (не закрытого кольцами) полушария планеты, то другого. Последний раз Земля проходила через плоскость колец Сатурна в 1980 г., следующее прохождение будет в 1995 г. Постоянно меняющийся вид планеты и ее сильная сплюснутость у полюсов затрудняет подготовку к зарисовкам Сатурна. По-видимому, разумнее обратиться в соответствующие организации любителей астрономии, где вам помогут изготовить бланки с точными контурами планеты и учетом вида колец.


Кольца Сатурна 

Кольца Сатурна имеют довольно сложную структуру. При наблюдениях в телескоп видны по крайней мере три из них: сравнительно яркое внешнее кольцо (кольцо А) и самое яркое кольцо B между которыми легко просматривается темный промежуток — щель Кассини; ближе к планете расположено кольцо С, которое из-за прозрачности называют также Креповым кольцом. В периоды, близкие к моментам пересечения Землей плоскости колец (когда Земля и Солнце расположены по разные стороны от нее), тень Сатурна может полностью скрыть часть колец. Иногда на кольцах можно заметить разного рода неоднородности, их следует зарисовывать с особой тщательностью.


Рис. 118. Вид Сатурна в большой телескоп-рефрактор с объективом диаметром 320 мм (12 дюймов) и увеличением 320 раз; 21 апреля 1982 г., 21 ч 00 мин по всемирному времени (слева). По снимку справа можно судить, насколько меньше деталей заметно на поверхности Сатурна по сравнению с Юпитером.


Рис. 119. На фотографии, полученной с борта «Вояджера», видно множество узких колец, из которых состоят внешнее (отдельное от других) кольцо А, широкое кольцо В и более слабое кольцо С; заметна также отчетливая тень от колец на поверхности планеты.


Спутники Сатурна

Сатурн, как и Юпитер, обладает интересной системой спутников. Самый яркий из них, Титан, имеет блеск 8m, еще три спутника ярче 10,5m, три других ярче 12,1m. Когда Земля пересекает плоскость орбит спутников, они кажутся наблюдателю яркими бусинками, нанизанными на тонкую нить колец. В крупные телескопы в системе спутников Сатурна наблюдаются те же явления, что и в системе «галилеевых» спутников Юпитера.

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука