Читаем Азбука звездного неба полностью

Чтобы удержать фотографируемую звезду в поле зрения телескопа, чаще всего используют второй небольшой гидирующий телескоп, соосный с основным. Обычно гидирующим телескопом служит длиннофокусный рефрактор, который крепят к основному. При фотографировании гидирующий телескоп лучше всего настроить на яркую звезду, расположенную вне поля зрения основного телескопа. В окуляре гидирующего телескопа должен быть крест, который обычно делают из стеклянных нитей и даже из паутины, иногда крест нитей гравируют на стекле. Поскольку ошибки сопровождения чаще случаются при работе с большим увеличением, когда фон неба темный и крест нитей практически не виден, крест нитей иногда подсвечивают слабым светом.

В отсутствие гидирующего телескопа звезды можно «удержать» в поле зрения телескопа во время фотографирования с помощью полупрозрачного диагонального зеркала или специальной призмы, которые направляют часть света фотографируемой звезды в окуляр гидирующей системы.

Фотопленки и продолжительность экспозиции

Фотопленку для фотографирования небесных объектов обычно подбирают экспериментальным путем, так как правильный выбор зависит не только от исследуемого объекта, но и от телескопа, фотокамеры, самого наблюдателя и т.д. Наблюдателю приходится действовать с учетом таких факторов, как допустимый размер зерна фотоэмульсии, нужное время экспозиции и необходимое увеличение. Высокочувствительные крупнозернистые пленки, допуская короткие экспозиции, позволяют фотографировать в редкие минуты наступления хорошей видимости; с таких пленок нельзя делать крупномасштабных отпечатков.

Для фотографирования ярких объектов типа Луны пригодны малочувствительные черно-белые мелкозернистые фотопленки, позволяющие получать очень контрастные негативы, с которых можно делать качественные крупномасштабные фотографии. Для фотографирования более слабых объектов, подобных планетам, нужны более чувствительные пленки; однако многие опытные наблюдатели предпочитают малочувствительные мелкозернистые пленки, хотя необходимые в таком случае длительные экспозиции усложняют процесс гидирования. Цветные пленки по своей природе менее удобны при получении снимков с большим увеличением; кроме того, при длительных экспозициях у них возможно искажение цвета. На некоторых фотопленках небесный фон может получиться зеленым, так как они чувствительны к слабому излучению земной атмосферы, на других, менее чувствительных в этом спектральном диапазоне, фон неба остается черным. (Однако с цветовыми искажениями можно бороться либо с помощью подходящих светофильтров, — чаще всего они нужны при длительных экспозициях, — либо соответствующей обработкой фотопленки в лаборатории.)

При слабой освещенности глаз сравнительно мало чувствителен к цветам, поэтому фотографии, как правило, богаче цветовыми оттенками. Черно-белые фотопленки нечувствительны к красному свету, но очень чувствительны к зеленому; по этой причине оценки звездных величин по фотографиям (фотографические звездные величины) отличаются от визуальных. Фотографии, сделанные через желтый светофильтр (например, Wratten 8)[4], создают изображение, близкое к тому, что видит глаз. Правда, чтобы при использовании фильтров достичь той же предельной звездной величины, что и при фотографировании без светофильтра, необходимы более продолжительные экспозиции.

Одной из проблем астрономической фотографии, на которую часто обращают внимание, является искажение в передаче цвета при фотографировании на цветную пленку. Продолжительность экспозиции при фотографировании небесных тел иногда в сотни раз превышает выдержки, применяемые при обычном фотографировании, однако это не приводит к соответствующему усилению почернения эмульсии. Все стандартные рекомендации по фотографированию на обычную фотопленку исходят из того, что время экспозиции не превышает нескольких секунд. Следовательно, на практике выбор продолжительности экспозиции при фотографировании небесных тел должен производиться не на основании стандартных рекомендаций, а экспериментальным путем, методом проб и ошибок. Поэтому при длительных экспозициях необходимо фиксировать точное время начала и конца экспозиции, а также подробно описывать используемый инструмент и условия наблюдений.

Цветные прозрачные пленки в основном пригодны для широкомасштабного фотографирования созвездии и Млечного Пути. На них вполне реалистически воспроизводится также северное сияние и серебристые облака. Хотя в наши дни высокочувствительные фотоматериалы не редкость, получение цветных негативных изображений небесных тел не получило широкого распространения — в основном в астрофотографии по-прежнему используют черно-белую фотопленку. Самые современные хромогенные пленки, допускающие экспозиции в широком интервале продолжительности, очень удобны при фотографировании звездных полей и объектов, существенно отличающихся по яркости.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука