С экспериментальной точки зрения эта проблема заключается в том, чтобы на основе временного ряда наблюдаемых или измеренных значений (пульса, ритмов мозговой активности) воссоздать развитие динамической системы (сердца или мозга соответственно) в фазовом пространстве, где мы сможем измерить и рассчитать магические числа хаоса: экспоненты Ляпунова, фрактальные размерности и так далее. Нам на помощь придет хитроумный прием, придуманный Давидом Рюэлем и Флорисом Такенсом: чтобы как-то воссоздать аттрактор системы, рассмотрим исходные значения с некоторым запаздыванием. Если мы имеем последовательность значений x1
, x2, х3, х4 …, то можно образовать множество пар чисел (х1, x2), (x2, x3), (x3, x4). Эти точки определят некоторую траекторию на плоскости. Если мы сгруппируем числа в тройки, получим траекторию в пространстве. Таким образом, динамика нашей системы будет описываться динамикой этого множества точек, и мы сможем вычислить фрактальную размерность системы или ее экспоненты Ляпунова. Будем воссоздавать систему со все большим запаздыванием (то есть будем объединять данные не в пары или тройки, а в четверки, пятерки и так далее). Существует теорема, гласящая: если исходная система периодическая, то ее фрактальная размерность будет возрастать до определенного значения, после чего примет некоторое целое значение (то есть перестанет быть фрактальной, дробной) и будет оставаться неизменной. Если же исходная система хаотическая, то ее фрактальная размерность стабилизируется вблизи некоторого дробного значения и как минимум одна экспонента Ляпунова будет положительной.Но нужна ли вся эта математика? Да, нужна, нравится вам это или нет. Как это ни парадоксально, простая динамика свидетельствует о заболевании, а сложная (хаотическая) динамика — синоним здоровья. Заболевание предполагает потерю сложности, а рост упорядоченности приближает нас к смерти. Появление упорядоченности сердечного или мозгового ритма у тяжелобольных пациентов — опасный симптом. Если измерить электрические сигналы мозга с помощью электродов, то полученная кривая будет казаться хаотической (непериодической) и фрактальной (то есть обладающей самоподобием). Если мы применим метод Рюэля — Такенса для восстановления аттрактора с запаздыванием, то увидим, что у здоровых пациентов в рассматриваемой системе будут наблюдаться странные аттракторы, у пациентов с заболеваниями головного мозга — квазипериодические циклы.
Наконец, следует отметить, что некоторые органы человека подобны фракталам.
Так, бронхи имеют практически фрактальную структуру со множеством ветвлений. Возможно, происходит это потому, что фракталы прекрасно позволяют перейти от одной размерности к другой в силу своей дробной размерности. Бронхи, имеющие фрактальную размерность, примерно равную двум, — идеальный переход от трехмерного дыхательного горла (его размерность равна 3) к плоскости диффузии (ее размерность равна 2), в ходе которого кислород из воздуха поступает в кровь.
(источник:
* * *