Читаем Баллистическая теория Ритца и картина мироздания полностью

Именно классическая трактовка позволяет решить одну из главных загадок интерференции и дифракции электронов. Если электроны пускать редко, дабы те следовали по одному, то интерференция на двух щелях и другие дифракционные картины, всё же, возникают, как показали опыты В. Фабриканта (изобретателя лазера, § 4.9). Но это значит, что каждый электрон проходит сразу через обе щели, интерферируя сам с собой, иначе б интерференция была невозможна. С другой стороны, можно зафиксировать, через какую именно щель прошёл каждый электрон, а также заметить то место люминесцентного экрана, куда электрон попал. Всё это не вяжется с волновым представлением электрона и тем, что он проходит сразу обе щели [15]. Учёных гнетёт это противоречие, и, потому, они либо избегают этой темы, либо выдумывают совсем уж мистические теории.

А на деле — всё просто. Раз причина дифракции не в электроне, а в вызванных им рентгеновских лучах, то ему и незачем проходить сразу обе щели. Электроны, поодиночке пролетающие через щели, вообще не влияют на дифракционную картину. Можно вообще заткнуть щели материалом, непроницаемым для электронов, но прозрачным для рождённого ими излучения, — дифракционная картина сохранится, хотя до приёмника не долетит ни один электрон. А точки, где детекторы фиксируют электроны, это не места попадания электронов, прошедших через щели, а участки, где энергия излучения достаточна для возбуждения атомов детектора, для засветки кристаллов люминофора или бромистого серебра. Всё точно так же, как в рассмотренном выше случае для обычного оптического излучения (Рис. 147).

Известен также опыт по дифракции электронов на атомах инертных газов. Такой опыт был выполнен Рамзауэром и Таунсендом [82]. Коротко суть его в следующем. Между источником И электронов и установленным напротив него приёмником П (Рис. 163) помещается рассеивающая среда — инертный газ. Выстреливаемый источником к приёмнику узкий пучок электронов известной энергии рассеивается атомами газа. Часть электронов из тех, что не рассеялись или рассеялись на малые углы, достигает приёмника, создавая электрический ток, измерение которого даёт процент долетевших частиц (этот процент и ток тем больше, чем меньше рассеяние).

Рис. 163. Электронный пучок от источника приходит к приёмнику ослабленным за счёт рассеяния электронов атомами газа.


Теоретически, с уменьшением скорости и энергии частиц, степень их рассеяния атомами, определяемая через эффективное сечение рассеяния σ, должна монотонно нарастать. Точно так же, быстро мчащийся автомобиль или снаряд, влетающий в полосу препятствий, отклоняется от прямого пути, «рассеивается» тем раньше и сильнее, чем меньше его начальная скорость.

Но в опыте такая картина, — рост рассеяния с падением скорости, — наблюдается только до определённого значения E1 энергии электронов (Рис. 164). С достижением его, дальнейшее снижение скорости приводит уже не к росту, а к спаду рассеяния. Лишь после того, как энергия электронов понизится до следующего характерного значения E0, степень рассеяния снова начнёт расти. Если Резерфорд, в своём известном опыте, сравнивал α-частицы, отбрасываемые назад тонкой золотой фольгой, с винтовочными пулями, отскакивающими от листа бумаги, то медленные электроны, пробивающие слой газа в опыте Рамзауэра, следует, напротив, уподобить лёгким соломинкам, прошивающим толстый лист брони. Действительно, классическая теория долгое время не могла объяснить аномально высокой проницаемости газов — для сравнительно медленных электронов.

Рис. 164. Зависимость сечения рассеяния электронов от их энергии в опыте Рамзауэра.


Но, достаточно было предположить у электрона волновые свойства, как всё становилось на свои места. По квантомеханическим представлениям, рассматривать рассеяние электрона, как частицы, можно лишь до тех пор, пока его импульс выше некоторого значения, пока дебройлевская длина волны электрона мала, — много меньше размеров рассеивающего атома. (Точно так же геометрическая оптика, по сути рассматривающая свет, как поток прямолинейно летящих частиц, — фотонов, применима лишь для оптических систем, значительно превосходящих размерами длины световых волн.) Но, при некоторой, достаточно малой, скорости дебройлевская длина волны электрона (λ=h/p, где h — постоянная Планка, а p — импульс электрона) сравнивается с размерами рассеивающих электроны атомов.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Стратегические операции люфтваффе
Стратегические операции люфтваффе

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность