Сверхтекучесть часто сравнивают со сверхпроводимостью, тоже наступающей возле точки абсолютного нуля [71, 134]. Ведь рождающие ток электроны снуют внутри металла, словно атомы газа. Потому и стали говорить о токе, течении "электронного газа". Его вязким трением, когда тот "сочится" сквозь поры кристалла, и объясняли прежде сопротивление проводников (§ 4.17). Ещё Ом ввёл наглядную гидродинамическую аналогию тока: проводник — это трубопровод; сила тока — расход жидкости (газа); разность потенциалов — разница давлений; сопротивление проводника — сопротивление трубопровода; выделение джоулева тепла — нагрев от вязкости жидкости (или газа) и т. д. А в сверхпроводнике вязкое трение электронного газа, как у гелия, исчезает, и он протекает по проводнику без сопротивления и потерь энергии.
Плодотворность классической модели тока делает её полезной и в настоящее время. Именно она вскрывает связь явлений сверхпроводимости и сверхтекучести, а, значит, — их природу. Правда, в проводнике говорят об электронном газе, тогда как сверхтекучий гелий считают жидкостью. Но вот с этим-то можно поспорить. Всё свидетельствует о том, что сверхтекучий гелий — это, в действительности, тоже газ, и аналогия с электронным газом полная.
Начать с того, что у всех газов с падением температуры
Казалось бы, с чего бы это жидкому гелию, полученному при охлаждении газообразного, вновь становиться газом при дальнейшем остывании? Но, зная упрямство гелия, его нежелание пребывать в жидком состоянии, мы можем ожидать от него любого фокуса. Так, на фазовой диаграмме (Рис. 181), показывающей состояние гелия, в зависимости от давления и температуры, видно, что линия
Физики привыкли твердить, что переход гелия в сверхтекучее состояние принципиально отличен от простых фазовых превращений жидкость-газ (кипение), жидкость-твёрдое тело (кристаллизация) и т. д., сопровождаемых поглощением или выделением определённого тепла и называемых "фазовыми переходами первого рода". А переход He I — He II, не выделяющий тепла, называют уже "фазовым переходом второго рода" (§ 4.18). Но это ошибка: переход гелия в сверхтекучее состояние требует отнятия у него некоторого стандартного количества тепла и столько же тепла надо вернуть, чтобы перевести гелий назад в нормальное состояние. Проморгали физики эту поистине скрытую теплоту перехода, так как привыкли иметь дело с фазовыми переходами, где всё скрытое тепло передаётся при постоянной фиксированной температуре. Так, температура плавящегося льда не тронется с 0 ºC, пока он не поглотит всю теплоту плавления. И, строя кривую теплоёмкости воды, в точке плавления следовало бы изобразить, кроме скачка теплоёмкости, ещё и очень острый пик (так называемую дельта-функцию), соответствующий бесконечной теплоёмкости, ибо в точке плавления подвод тепла не наращивает температуры. Ведь теплоёмкость единицы массы тела — это и есть, по определению, отношение подводимой теплоты к повышению температуры тела.