Читаем Баллистическая теория Ритца и картина мироздания полностью

Сверхтекучесть часто сравнивают со сверхпроводимостью, тоже наступающей возле точки абсолютного нуля [71, 134]. Ведь рождающие ток электроны снуют внутри металла, словно атомы газа. Потому и стали говорить о токе, течении "электронного газа". Его вязким трением, когда тот "сочится" сквозь поры кристалла, и объясняли прежде сопротивление проводников (§ 4.17). Ещё Ом ввёл наглядную гидродинамическую аналогию тока: проводник — это трубопровод; сила тока — расход жидкости (газа); разность потенциалов — разница давлений; сопротивление проводника — сопротивление трубопровода; выделение джоулева тепла — нагрев от вязкости жидкости (или газа) и т. д. А в сверхпроводнике вязкое трение электронного газа, как у гелия, исчезает, и он протекает по проводнику без сопротивления и потерь энергии.

Плодотворность классической модели тока делает её полезной и в настоящее время. Именно она вскрывает связь явлений сверхпроводимости и сверхтекучести, а, значит, — их природу. Правда, в проводнике говорят об электронном газе, тогда как сверхтекучий гелий считают жидкостью. Но вот с этим-то можно поспорить. Всё свидетельствует о том, что сверхтекучий гелий — это, в действительности, тоже газ, и аналогия с электронным газом полная.

Начать с того, что у всех газов с падением температуры T вязкость η, в отличие от жидкостей, не растёт, а убывает по закону η~T1/2. Именно с этим когда-то связывали температурный рост сопротивления металлов: с повышением температуры росла вязкость электронного газа (Рис. 177). Как легко видеть, эта теория предсказывала и полное исчезновение сопротивления возле точки абсолютного нуля, при T=0 К. Поэтому, естественно допустить, что и гелий при охлаждении ниже критической температуры 2,17 К переходит в сверхтекучее состояние, за счёт превращения в газ, обладающий в таких условиях почти нулевой вязкостью η. И точно, опыт Э.Н. Андроникашвили показал, что при падении температуры вязкость сверхтекучего гелия снижается по закону η~T1/2, вплоть до нуля при T=0 К [134]. Но этот опыт почему-то истолковали как подтверждение абсурдной двухжидкостной модели Гинзбурга-Ландау, по которой гелий состоит из нормальной и сверхтекучей компонент: доля последней нарастает при охлаждении, достигая 100 % при абсолютном нуле, что якобы и объясняет нулевую вязкость. На деле же наблюдалось лишь классическое и давно предсказанное падение вязкости газообразного гелия.

Казалось бы, с чего бы это жидкому гелию, полученному при охлаждении газообразного, вновь становиться газом при дальнейшем остывании? Но, зная упрямство гелия, его нежелание пребывать в жидком состоянии, мы можем ожидать от него любого фокуса. Так, на фазовой диаграмме (Рис. 181), показывающей состояние гелия, в зависимости от давления и температуры, видно, что линия AC перехода нормального гелия (He I) в сверхтекучий (He II) — начинается в той же точке А, откуда выходит и линия AB перехода жидкость-газ. Это доказывает тесную связь сверхтекучего и газообразного гелия. Тогда С будет тройной точкой, в которой сходятся твёрдое, жидкое и газообразное состояние вещества, и которой, как полагали физики, нет у одного только гелия.

Рис. 181. Фазовая диаграмма гелия показывает связь сверхтекучего He II с твёрдым гелием и газом.


Физики привыкли твердить, что переход гелия в сверхтекучее состояние принципиально отличен от простых фазовых превращений жидкость-газ (кипение), жидкость-твёрдое тело (кристаллизация) и т. д., сопровождаемых поглощением или выделением определённого тепла и называемых "фазовыми переходами первого рода". А переход He I — He II, не выделяющий тепла, называют уже "фазовым переходом второго рода" (§ 4.18). Но это ошибка: переход гелия в сверхтекучее состояние требует отнятия у него некоторого стандартного количества тепла и столько же тепла надо вернуть, чтобы перевести гелий назад в нормальное состояние. Проморгали физики эту поистине скрытую теплоту перехода, так как привыкли иметь дело с фазовыми переходами, где всё скрытое тепло передаётся при постоянной фиксированной температуре. Так, температура плавящегося льда не тронется с 0 ºC, пока он не поглотит всю теплоту плавления. И, строя кривую теплоёмкости воды, в точке плавления следовало бы изобразить, кроме скачка теплоёмкости, ещё и очень острый пик (так называемую дельта-функцию), соответствующий бесконечной теплоёмкости, ибо в точке плавления подвод тепла не наращивает температуры. Ведь теплоёмкость единицы массы тела — это и есть, по определению, отношение подводимой теплоты к повышению температуры тела.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Стратегические операции люфтваффе
Стратегические операции люфтваффе

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность