Обратите внимание — первый же шаг в область высоких энергий принес совершенно новое и неожиданное явление. Причем неожиданное в абсолютном смысле этого слова. Например, волновая гипотеза Л. де Бройля не была предугадана физикой прошлых лет сколь-нибудь определенным образом. Тем не менее, вскоре после ее появления стало понятно, что волновые представления о веществе — долгожданные гости: из глубин истории сразу всплыло великое противостояние Фалеса и Платона, Ньютона и Гюйгенса, Томсона и Гольдштейна. А вот античастицы никто и никогда не предсказывал, ни в одном физическом исследовании нельзя встретить и намека на антимиры. Разве что в отдельных натурфилософских работах появлялись неопределенные идеи о непременном существовании противоположных начал, но это основывалось скорее всего на некотором обобщении опыта человеческих взаимоотношений, например, борьбы Добра и Зла и т. п. Два других важнейших сюрприза со стороны космических лучей тесно взаимосвязаны между собой и в некотором смысле еще более поразительны, чем открытие позитрона. Речь идет об обнаружении новых процессов — налетающая с огромной энергией космическая частица буквально взрывалась, сталкиваясь с одним из ядер вещества, генерируя множество следов, которые, в свою очередь, могли быть приписаны новым частицам, обладающим промежуточным значением массы между протоном и электроном.
Первые регистрации процессов множественного образования новых частиц, названных мезонами (дословно — срединными, промежуточными), стали отправным пунктом для того понимания центральной проблемы физики высоких энергий, которое сложилось в более или менее четкой форме лишь в настоящее время, примерно за последнее десятилетие.
В физику входило представление о новых чрезвычайно интенсивных силах, действующих между некоторыми элементарными частицами.
Необходимость в таких силах отчасти предугадана в процессе исследования атомных ядер. Уже в начале 20-х годов исследователи пришли к убеждению, что ни рассеяние на ядрах, ни сам факт их существования нельзя понять, если не предположить, что мы сталкиваемся с взаимодействиями, значительно сильней электромагнитных, но с чрезвычайно малым радиусом действия. Такая гипотеза сразу же позволяла качественно объяснить аномальное поведение альфа-частиц, пытавшихся проскочить в непосредственной близости от ядер, а также преодолеть очевидную трудность в ранних моделях самого ядра. Дело в том, что несколько протонов, образующих заряженный «остов» ядра, не могли быть устойчивой системой из-за огромных кулоновских сил отталкивания. Не могли, разумеется, если не существовало бы каких-то еще более мощных удерживающих, цементирующих их сил.
Более подробный рассказ о замечательном «ядерном клее» и интересных свойствах ядерно-активных частиц пойдет в последующих главах, там мы и обсудим не спеша обозначенные выше открытия. Здесь же мы отметим еще два полезных обстоятельства.
Во-первых, установление высокой активности космических пришельцев вдохнуло жизнь в едва уже не похороненную «с подобающими почестями» атмосферную гипотезу. Стало ясно, что, по крайней мере, часть попадающих в наземные установки частиц образуется не в глубинах вселенной, а в земной атмосфере под действием первичного истинно космического излучения.
Во-вторых, среди мезонов обнаружились своеобразные «замаскированные» электроны. Слово «своеобразные» относится лишь к способу их маскировки — они обладают примерно в 207 раз большей массой, в остальном же они начисто лишены какого-либо своеобразия, и именно этот факт оказался едва ли не самой неприступной тайной микромира. Сначала новые частицы окрестили мю-мезонами, потом название немного сократили до «мюонов», вероятно, для того, чтобы отличать их от других, гораздо более активных собратьев по мезонному семейству. К этому времени дираковское удвоение миров было более или менее неплохо освоено теорией, но вот для чего понадобилось природе еще одно, причем персональное удвоение электронов — этого никто так и не знает. Мюоны намного тяжелее электронов, но во всех реакциях строго следуют тем же правилам поведения, которые пишутся для электронов. Достаточно лишь провести во всех электронных соотношениях замену масс, то есть буквально подставить другое число, и перед вами готовый свод мюонных законов.
Так возникла «мю-е-проблема»; под таким названием проводятся международные семинары, ставятся сверхточные эксперименты, выходят в свет десятки статей. А она практически в первозданном виде и остается все той же мю-е-проблемой…
Ключи к микромиру
За последние 80-100 лет произошел коренной перелом во взаимоотношениях науки и ее наиболее крупных технических приложений. Исчезает характерное для прежних времен стремление извлекать пользу из новых явлений, не постигая их сути.