Чем слабей взаимодействие, вызывающее распад, тем медленнее он происходит. Как мы помним, квантовая теория позволяет рассчитывать лишь вероятностные характеристики процессов. В данном случае обычно вычисляется вероятность перехода (например, пи-мезона в мюон и нейтрино) в единицу времени, а собственно временем жизни называется величина, обратная вероятности перехода. Понятно, что за счет слабых взаимодействий вероятности перехода получаются существенно меньшие, а, следовательно, и время жизни таких частиц большее. Скажем, родной брат заряженных пионов пи-ноль-мезон - может распадаться на два фотона только за счет электромагнитных взаимодействий, которые намного "сильнее слабых", и поэтому он живет недолго, в среднем 0,8.10-16 секунды.
Но по сравнению с резонансами и пи-ноль-мезон великий долгожитель. Если мы договоримся принять его краткий срок существования, его век жизни, за год, то в таком "микрокалендаре" резонанс живет всего несколько секунд, тогда как, например, мюон - около 20 миллиардов лет (примерно столько, сколько существует наблюдаемый участок вселенной в обычных годах)! В нормальной же шкале "ро" имеет время жизни порядка 10-23 секунды, и мюон - 2,2.10-б секунды, то есть резонанс должен распадаться на пионы за счет сильных взаимодействий. В этом его основная особенность. За столь малое время "ро" успевает пройти лишь микроскопическое расстояние порядка 10-13 сантиметра и, разумеется, не успевает оставить заметный макроскопический след. Поэтому его появление регистрируется не обычным путем, а особым образом.
Поскольку "ро" распадается на пару пионов, которые можно наблюдать непосредственно, то в какой-нибудь из реакций отбирают все события с рождением двух пи-мезонов и строят своеобразный график распределения по их суммарной массе. В этом распределении при массе примерно 773 МэВ должен наблюдаться максимум - горб кривой, - то есть основная часть событий концентрируется вблизи указанного значения. Однако распределение оказывается довольно широким - основание полученного "горба" составляет примерно 152 МэВ. Получив эти данные (для этого необходимо обработать сотни и сотни фотографий, содержащих пионные следы!), можно сделать вывод о том, что реакция образования пары пи-мезонов идет в два этапа: сначала рождается некая частица с массой 773 миллиона электрон-вольт, а потом она распадается на два пиона. Время жизни промежуточной частицы вычисляется простым делением постоянной Планка на ширину наблюдаемого "горба". Эта промежуточная частица и есть ро-резонанс, или ро-мезон.
В остальном "ро" ничем не отличается от обычных частиц-долгожителей и обладает всеми нормальными свойствами мезонов. Например, резонанс ро-мезон может быть заряжен положительно, или отрицательно, или быть нейтральным.
Резонанс омега-мезон имеет немного большую массу, но ширина соответствующего ему "горба" примерно в 15 раз меньше, то есть он живет в 15 раз дольше. Известны и более "узкие" резонансы, но все равно их времени жизни не хватает для непосредственной регистрации.
В сущности, физики столкнулись с самым настоящим резонансным явлением, известным и во многих других разделах науки. В воинской практике издавна существует железное правило: если колонна солдат вступает на мост, немедленно прекращается маршировка "в ногу", ибо парадное шествие может обойтись (и много раз обходилось!) очень дорого - всякий мост имеет привычку немного раскачиваться в такт движению, но, пока толчки ног случайны, размах колебаний невелик, а стоит общим усилием попасть на "любимую частоту" моста, и он не выдержит - рухнет. Если изобразить размах колебаний (амплитуду, говоря научным слогом) как функцию частоты, то в графике вблизи "любимой частоты" моста возникает резкий максимум. Здесь колебания могут стать столь сильными, что вся конструкция не выдержит и развалится. Таково типично механическое проявление резонанса.
С подобным явлением постоянно встречаются и при изучении электрических цепей. Каждый день, настраивая приемник на любимую станцию, вы регулируете специальный контур до тех пор, пока он не "попадает в резонанс" - начинает пропускать радиоволны определенной частоты, на которой и ведется передача со станции.
Ясно, что, меняя размеры моста и материалы, из которых он сделан, или применяя несколько иные радиодетали, мы можем в обоих случаях создать резонансные эффекты при совсем иных частотах. В случае адронных резонансов мы не вольны в своих возможностях - резонансный эффект наступает при определенных энергиях, и обнаруженные значения масс и времен жизни являются характерными и устойчивыми параметрами микромира. В этом смысле резонансы можно рассматривать как полноценные частицы наравне с долгоживущими.