Читаем Бег за бесконечностью (с илл.) полностью

Предположим, например, что электрон представляет собой упругий шарик, способный сжиматься или расширяться, — вообще, деформироваться под действием внешних сил; нечто вроде теннисного мячика, уменьшенного в тысячи миллиардов раз! Но в таком случае весь опыт развития физики подсказывает, что само «электронное вещество» должно обладать какой-то внутренней структурой. Действительно, откуда берутся замечательные упругие свойства того же самого теннисного мячика? В тот момент, когда он ударяется, например, о землю, молекулы образующего его вещества испытывают некоторую деформацию, но стремятся немедленно возвратиться к исходному состоянию, и мяч резко отскакивает. Иными словами, упругость связана с определенной молекулярной структурой — взаимным расположением молекул — и величиной силы, связывающей эти микрообъекты между собой. Если великий И. Ньютон мог исследовать законы соударения упругих бильярдных шаров, не углубляясь в проблему их атомно-молекулярного строения, и выводить отсюда важные законы механики, то в начале нашего века такая точка зрения уже не могла удовлетворить исследователей. Тем более если речь шла об электроне! Его упругие свойства, несомненно, требовали объяснения, то есть в конечном счете нужны были дополнительные предположения о его внутренней структуре. Таким образом, представление об упругом электроне-шарике неизбежно вело к идеям о существовании каких-то более мелких частиц, из которых построено «электронное вещество». Но ведь и те, более мелкие частицы будут построены из еще более мелких частиц и т. д. и т. п. И нет ничего скучнее такой бесконечной повторяемости одного и того же приема постижения реальности!

А что, если одним махом покончить с этой повторяемостью уже на уровне электрона? Что, если объявить его истинно элементарной частицей, тем самым «атомом» в буквальном смысле слова, как его понимали древние греки?

Посмотрим, какие проблемы возникнут в этом случае.

С точки зрения физики можно вообразить идеальный «неделимый» объект, не подверженный никаким деформациям. Он известен под названием «абсолютно твердого тела». Такое представление довольно полезно в механике, где изучается движение больших тел, но, разумеется, это типичное упрощение, пригодное для определенного, ограниченного круга задач. В реальное существование тел, которые никаким воздействием нельзя ни растянуть, ни сжать, ни расщепить на части, трудно поверить, — попросту говоря, науке неизвестны такие примеры. Но отсутствие примера — еще не достаточный аргумент против «абсолютно твердого» электрона. А вдруг именно электрон и представляет собой первый случай диковинного объекта?

Однако и в таком варианте мы сталкиваемся с серьезными затруднениями. В физике хорошо известен такой закон: чем тверже тело, тем быстрее в нем распространяется звук. В воде — намного быстрей, чем в воздухе, в металле — намного быстрей, чем в воде и так далее… В конце концов, получается так, что в «абсолютно твердом теле» звук должен распространяться с бесконечной скоростью. Таким образом, звуковой сигнал проходил бы сквозь «абсолютно твердый» электрон-шарик мгновенно. Этот воображаемый факт не нарушает никаких правил обычной механики от Ньютона, но находится в непримиримом противоречии с электродинамикой, основанной на уравнениях Максвелла.

Последняя, казалось бы, довольно абстрактная проблема послужила отправной точкой для второй уже упомянутой статьи А. Эйнштейна в 1905 году. А. Эйнштейн предположил, что никакое движение или взаимодействие — вообще, несущий информацию сигнал — не могут распространяться быстрее света в пустоте. Это ограничение потребовало серьезного пересмотра основ механики, а впоследствии и физики в целом. Предположение А. Эйнштейна стало одним из краеугольных камней так называемой специальной теории относительности — одного из красивейших достижений научной мысли XX века. Механика частиц, построенная на основе теории относительности, стала называться релятивистской. Важнейшим ее достоинством как раз и оказалось хорошее согласование с электродинамикой.

Не останавливаясь на обосновании теории относительности, мы будем использовать два важных факта, следующих из нее. С первым мы уже знакомы — это ограничение на скорость распространения любых сигналов: она не может превышать скорость распространения света в пустоте. Второй факт состоит в том, что масса тела, движущегося по законам теории относительности, должна возрастать по мере того, как скорость движения тела приближается к предельной, то есть к скорости света. Поэтому частица, обладающая массой, практически никогда не может достичь предельной скорости, в этом случае она обладала бы бесконечно большой массой.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже