Пример, конечно, не столько наглядный, сколько сногсшибательный. Посудите сами: световой год — это расстояние, которое способен пройти свет в пустоте за один земной год. Скорость света составляет примерно 3 ∙ 1010
сантиметров в секунду, а год длится 3,16 ∙ 107 секунд (кстати, удобнейшая приближенная формула для запоминания: π ∙ 107 секунд, где π — обычное школьное «пи»!), то есть один световой год равен 1018 сантиметров, а 100 световых лет соответственно равны 1020 сантиметров. Это на 10(!) порядков превышает радиус Солнца и примерно в три раза радиус ядра нашей Галактики. Отсюда ясно, по крайней мере, одно: нейтрино способно приносить информацию из таких уголков вселенной, откуда ни одна другая частица не выберется «живьем».Разумеется, о проникающей способности говорят лишь в среднем, то есть каждое отдельное нейтрино может застрять в первом же миллиметре вашего письменного стола, а может и проскочить всю вселенную. Просто оба эти события маловероятны. Рассуждая о гигантской космической преграде, имеют в виду, что вероятность застревания нейтрино при наличии более толстой преграды, скажем, свинцовой стены толщиной более 100 световых лет, весьма велика. В общем, здесь все происходит по правилам квантовой механики: запустив на какую-либо мишень достаточно интенсивный пучок нейтрино, мы вскоре обнаружим редкие события его столкновений с частицами вещества. Но именно в этом и скрывались основные трудности в постановке решающего опыта — нужен был действительно мощный поток нейтрино.
Необходимый поток антиподов нейтрино — антинейтрино достигался на некоторых ядерных реакторах, и благодаря этому американские физики сумели зарегистрировать реакцию такого типа: антинейтрино налетает на протон, они взаимодействуют, и в результате возникают нейтрон и позитрон. Это открытие состоялось в 1956 году. В 1962 году был обнаружен другой тип нейтрино, так называемое
А теперь обсудим вторую нерешенную задачку, где в ответе появится
В разрешении данной загадки значительную роль сыграла небольшая заметка советского физика-теоретика И. Тамма, опубликованная в журнале «Нэйче» («Природа») в 1934 году. Он предположил, что силы, действующие между протонами и нейтронами, обусловлены обменом парами квантов электронного и нейтринного полей. Эта идея следовала из аналогии с картиной взаимодействия электрических зарядов, например, электронов, которые обменивались между собой фотоном. По замыслу И. Тамма, электрон-нейтринные пары должны были «замещать» фотоны в задаче о взаимодействии протонов и нейтронов. Разумеется, теперь речь шла не об электрических, а о каких-то особых «ядерных зарядах». Силу взаимодействия между протонами и нейтронами можно было оценить непосредственно, исходя из теории Ферми, по той интенсивности, с которой нейтрон испускает электрон и антинейтрино, превращаясь при этом в протон. Но оказалось, что такое взаимодействие слишком слабо для поддержания стабильности атомных ядер! Однако идея И. Тамма проложила дорогу решению проблемы ядерных сил. Физикам стало ясно, что непосредственно применять готовые модели электромагнитных или слабых взаимодействий нельзя, — соответствующие силы просто не смогут склеить протоны и нейтроны в ядре. Но в ограниченном виде аналогия с электродинамикой — там, где речь шла о некоторых обменных частицах — была вовсе не плоха. Именно из этого исходил двадцативосьмилетний физик-теоретик из Осакского университета X. Юкава, приступая к анализу природы новых сил, действующих в ядре.