Когда классификация адронов по «странности» была завершена, перед физиками возникла заманчивая аналогия. Раз протон и нейтрон приближенно оказались разными зарядовыми состояниями одной частицы — нуклона, то не являются ли нуклон и гипероны, в свою очередь, различными по «странности» состояниями одной и той же частицы? Не происходит ли то же самое и с пи- и ка-мезонами?
Для того чтобы поверить в такую возможность, нужно было, конечно, немалое воображение. Ведь симметрия, которая в данном случае могла появиться, была бы нарушена гораздо сильней, чем изотопическая. Это видно хотя бы из того, что разность масс «странных» и «нестранных» адронов не столь уж мала по сравнению с самими величинами масс. Относительная разность может достигать здесь десятков процентов! Теперь уже нарушение новой симметрии нельзя приписать электромагнитным взаимодействиям, а необходимо вводить два типа сильного взаимодействия:
В воображаемом мире, где существует только предельно сильное взаимодействие, все восемь стабильных барионов выглядят как один. Если включить умеренно сильное взаимодействие, то произойдет расщепление на «нестранные» нуклоны и «странные» гипероны — мы как бы увидим 4 типа частиц. И наконец, если включить электромагнитное взаимодействие, то произойдет более полное расщепление, и перед нами предстанут все восемь барионов с различными значениями электрического заряда и «странности».
Нечто подобное произойдет и с восемью стабильными мезонами (тремя пи-, четырьмя ка- и эта-мезонами): в мире предельно сильного взаимодействия они будут на одно лицо, будто это одна частица. По мере включения умеренно сильных и электромагнитных взаимодействий единый мезон будет все сильней расщепляться, пока не появятся все 8 реальных частиц.
Именно с такой идеей группировки адронов и выступили в 1961 году М. Гелл-Манн и Ю. Нееман. Предельно сильные взаимодействия предположили они, должны обладать особой
В новой системе классификации все наблюдаемые адроны относились к определенному набору, который может включать одну, восемь или десять частиц. Все адроны, в том числе и резонансы, действительно были приписаны к одному из таких наборов. Это привело, конечно, к очень экономичному представлению таблицы элементарных частиц — гораздо более «крупноблочному», чем в случае использования только изотопической симметрии.
Рассматривая каждый набор в воображаемом мире, где учтены только предельно сильные взаимодействия, как единую частицу, можно было затем включить умеренно сильные взаимодействия и оценить возникающее за счет него расщепление масс. Таким способом и были получены соотношения между массами для различных состояний каждого набора. В тех случаях, когда все частицы данного набора были известны, эта операция приводила к удивительно хорошему согласию теории и эксперимента.
Расчет соотношений между массами адронов внутри каждого набора и привел к важному открытию, которое стало основным свидетельством в пользу схемы Гелл-Манна — Неемана.
Дело в том, что, пытаясь укомплектовать набор из 10 барионов, физики столкнулись с небольшой трудностью. Среди известных адронов довольно быстро обнаружились девять хороших кандидатов в эту «десятку». Эти кандидаты представляли собой короткоживущие барионные резонансы: 4 частицы дельта-1232 (это различные зарядовые состояния резонанса, открытого Э. Ферми), 3 сигма-1385 и 2 кси-1530. А вот десятого — «замыкающего» — подыскать не удалось. Его масса была вычислена на бумаге и должна была составлять примерно 1670 МэВ. Были заранее известны и многие другие свойства, например, его «странность» должна была быть равна минус три и электрический заряд — минус единице. Но среди известных адронов такая частица не значилась. И только в самом начале 1964 года из Брукхэвенской национальной лаборатории было получено необходимое известие: на одной из 50 тысяч фотографий зарегистрирован каскад из целых семи частиц, связанный с распадом нового гиперона с массой около 1670 МэВ! Новая частица была названа
Открытие омега-минус-гиперона укрепило веру в унитарную классификацию, и в настоящее время она считается общепринятой. Это, конечно, не означает, что физикам стало все ясно в адронном мире. Остаются и возможности обобщения, и непонятные проблемы.
Дело в том, что с математической точки зрения и изотопическая симметрия В. Гейзенберга, и унитарная симметрия, предложенная М. Гелл-Манном и Ю. Нееманом, являются различными формами унитарных симметрий общего типа. Вторая оказывается просто симметрией более высокого типа, чем первая; именно поэтому она и позволяет объединять частицы в более крупные наборы, «блоки», и часто называется Высшей Симметрией.