Читаем Бег за бесконечностью (с илл.) полностью

Вообразим теперь такую полуфантастическую ситуацию, когда перед нами находится какое-то сложное устройство внутри большого ящика, а забраться внутрь этого ящика и покопаться в его схеме нет никакой возможности. Скажем, ящик не поддается действию механических инструментов, которые находятся в нашем распоряжении, или в него нельзя заглядывать просто по условиям игры. Снаружи имеется некоторое число «входов», куда можно подавать сигналы — определенные комбинации электрических токов, а также экран, на котором в ответ на любой «входной» сигнал появляется какой-то «выходной» сигнал, например, в виде графика поведения электрического тока.

Предположим теперь, что ни схема устройства, ни даже смысл подаваемых сигналов и ответов нам заранее неизвестны, а стоящая перед нами задача — выяснить схему работы ящика и установить природу сигналов.

Эта воображаемая ситуация неплохо отражает характер проблем, стоящих перед исследователями микромира. Роль исходного сигнала играют частицы, выпускаемые из ускорителя на мишень, роль ответного — те частицы, которые получаются в результате реакции. А само хитроумное устройство ящика — это конкретные механизмы взаимодействия между частицами, определяющие правила их поведения во всевозможных реакциях.

Приведенный пример обычно называют «черным ящиком»; название возникло в кибернетике. Для физики оно не совсем подходит, поскольку в физике представление о каком-то «черном» объекте связано с такой характеристикой: он способен все поглощать, но ничего не выпускает, во всяком случае, не отражает. Но дело, конечно, не в словах. Основная ценность такого примера в ясной демонстрации активности экспериментатора. На ящик можно глубокомысленно взирать, но никогда не постичь его устройства, если не воздействовать на его «входы» всеми доступными сигналами и не осмысливать их связи с ответами.

При исследовании частиц, в частности адронов, физики так и поступают: они воздействуют одними частицами на другие и пытаются выяснить строение самих частиц и природу сил, действующих между частицами.

Адроны особенно интересны в этом отношении. Они оказались первыми элементарными частицами, которые, в сущности, неэлементарны и обладают сложной внутренней структурой.

Как вы помните, начальные подозрения в неэлементарности адронов были связаны просто с обилием адронного мира. Весь опыт науки подсказывал, что если наблюдается множество различных объектов одного класса, то они непременно должны быть составлены из гораздо меньшего количества более элементарных объектов. Такова, в сущности, атомистическая традиция, и она пока не подводила физиков.

Попытки свести все наблюдаемое многообразие адронов к каким-то более фундаментальным частицам привели к модели кварков, которая действительно позволяет «сконструировать» любой адрон из нескольких более простых частиц. Несмотря на то, что кварки не были выбиты из адронов, серьезных сомнений в составной природе сильно взаимодействующих представителей микромира у физиков нет.

Но вывод о том, что, скажем, протон составлен из трех кварков, еще не достаточен для полного понимания его структуры. Нужно знать закономерности сил, действующих между кварками, а также представлять себе дополнительные элементы структуры адрона. Нет ли внутри его каких-то иных объектов? Не потребуется ли дополнять чисто кварковую картину какими-либо новыми представлениями?

Важность вопросов такого типа хорошо видна на примере самых первых шагов в микромир. Как вы помните, открытие электрона сыграло решающую роль в постижении структуры атомов. Физики практически сразу осознали, что электроны — непременные составляющие атомов. Однако до тех пор, пока в резерфордовских экспериментах не было проведено прямое зондирование атомной структуры, об устройстве атомов существовали лишь более или менее правдоподобные догадки.

Нечто аналогичное произошло и в адронной физике. Попытки прямого зондирования структуры адронов были предприняты немедленно, как только в руках у исследователей оказались подходящие инструменты.

В 1956 году группа американских физиков под руководством Р. Хофстэдтера приступила к изучению взаимодействия электронов с нуклонами и дейтронами — атомными ядрами дейтерия. Пучок электронов с очень большой (по тем временам!) энергией до 0,6 ГэВ выводился на мишени из водорода или дейтерия. Электроны рассеивались протонами или дейтронами, состоящими из протонов и нейтронов, на некоторые углы относительно направления падения пучка, и физики непосредственно изучали распределение рассеянных электронов по этим углам. Форма такого распределения и должна была дать информацию о строении адронов. В чем же заключалась идея опыта? Под какую модель он ставился?

Перейти на страницу:

Все книги серии Эврика

Нет соединения с сервером, попробуйте зайти чуть позже