Нечто подобное происходит и с «голым» электроном. Веществом, которое его экранирует, являются как раз виртуальные частицы, которые неизбежно появляются при учете взаимодействия. Квантовая электродинамика позволяет оценить эффективность этой экранировки, и оказывается, что заряд экранируется бесконечно сильно! Поэтому неудивительно, что, приписав «голому» электрону конечный электрический заряд, мы приходим к выводу, что этот заряд полностью экранируется «шубой» реального электрона, который и должен наблюдаться на опыте. И получается неприятный результат — этот реальный электрон должен выглядеть как частица с нулевым электрическим зарядом!
Чтобы прорвать бесконечно сильную экранировку, разумеется, необходимо приписывать «голому» электрону бесконечно большой заряд, что, как мы уже видели, тоже неудовлетворительно.
Вот с такими трудностями пришлось столкнуться теоретикам при попытке проверить применимость квантовой электродинамики к описанию процессов в сколь угодно малых областях пространства. Эти трудности и заставили их искать новый подход к описанию взаимодействий на малых расстояниях.
Но, прежде чем было достигнуто такое понимание проблемы, теоретики успели проделать довольно большую работу по построению моделей слабых и сильных взаимодействий по образцу квантовой электродинамики.
Как вы помните, первой моделью слабых взаимодействий оказалась теория бета-распада, предложенная Э. Ферми. Согласно этой теории нейтрон трансформировался в протон, излучая пару: электрон и антинейтрино. Э. Ферми в значительной степени исходил из аналогии с квантовой электродинамикой, но в его теории место фотона как бы занимала пара, состоящая из лептона и антилептона. Впоследствии его идея была расширена и позволила описать все распады сравнительно долгоживущих частиц как проявление некоторого универсального слабого взаимодействия.
Характерной особенностью этой теории является следующее представление: четыре частицы — барионы или лептоны — непременно взаимодействуют в одной точке, то есть в непосредственном контакте друг с другом. С помощью такого представления можно описать и распады частиц, и их рассеяние. Скажем, отрицательно заряженный мюон способен распадаться на электрон и пару, состоящую из электронного антинейтрино и мюонного нейтрино. В данном случае взаимодействие выглядит как контакт четырех лептонов. Это же представление позволяет описать и другой процесс, например, столкновение мюона с электронным нейтрино. В результате этого столкновения должны образоваться электрон и мюонное нейтрино.
В случае бета-распада взаимодействие выглядит как контакт двух барионов и двух лептонов. И опять на основе этого же представления можно было описать другие типы процессов, например, рассеяние электронного нейтрино на нейтроне, в результате которого возникал протон и электрон.
Обратите внимание на то, что в обоих случаях описания рассеяния возникает четкая закономерность превращения заряженных частиц в незаряженные и наоборот. Заряженный мюон трансформируется в мюонное нейтрино, а электронное нейтрино — в электрон. Или: нейтрон трансформируется в протон, а электронное нейтрино — опять-таки в электрон.
Такая же закономерность наблюдается и во всех остальных известных процессах слабого взаимодействия. Отсюда и родилась интересная гипотеза: а не осуществляется ли слабое взаимодействие за счет обмена особым квантом, который как бы переносит заряд при взаимной трансформации заряженных и нейтральных частиц.
Гипотетическая частица, которую называют
А как быть в том случае, когда слабое взаимодействие осуществляется без переноса какого-либо заряда, например, когда нейтрино упруго рассеивается на электроне? Такого типа события долгое время вообще не наблюдались, но недавно было установлено, что они все-таки происходят.
Механизм такого взаимодействия может быть обусловлен еще одной гипотетической частицей
Если гипотетические частицы дубль-вэ- и зэт-мезоны будут открыты, то картина слабых взаимодействий станет очень похожа на электродинамическую картину. Существенная разница между ними будет обусловлена лишь различными свойствами этих мезонов и фотона. Действительно, масса фотона равна нулю, из-за этого электромагнитные взаимодействия обладают бесконечным радиусом действия. Гипотетические же переносчики слабых взаимодействий должны иметь очень большие массы, и поэтому радиус действия слабых сил должен быть очень мал, по-видимому, не более 10-15
сантиметра. Кроме того, фотон нейтрален, а дубль-вэ-мезоны способны нести заряд.