Читаем Бег за бесконечностью полностью

Надо сказать, что как раз на рубеже столетий произошло крайне важное для теоретической физики событие — окончательно оформилась классическая электродинамика, претендовавшая на полное и последовательное описание электрических и магнитных явлений. Великая заслуга создателей этой науки — английских физиков М. Фарадея и Дж. Максвелла состояла в том, что они ввели в рассмотрение новый объект, особое состояние материи — электромагнитное поле. Благодаря этому все известные электрические, магнитные и даже световые явления можно было свести к нескольким фундаментальным законам распространения электромагнитного поля в пространстве и его взаимодействия с электрическими зарядами. После того, как на арену физических исследований вышла первая элементарная частица — электрон, усилия теоретиков и экспериментаторов сосредоточились на поиске конкретных закономерностей его поведения под действием электромагнитного поля.

Этот пункт оказался своеобразным средоточием веры и надежды. Физики верили в классическую электродинамику, которая позволила единым образом описать десятки разрозненных фактов в блестящем согласии с опытными данными. Поэтому они вполне серьезно надеялись на успех теории и в применении к электронам. Дело было, конечно, не только в простой надежде на успех. Вопрос ставился принципиально: справится ли существующая теория с описанием взаимодействия электромагнитного поля с электроном — мельчайшей структурной составляющей вещества? Положительный ответ на этот вопрос оказался бы величайшим триумфом теории, а отрицательный — наносил непоправимый ущерб ее основам.

В такой ситуации подробное изучение фотоэффекта давало физикам исключительную возможность для экспериментальной проверки теоретических предсказаний. Согласно классической электродинамике свет представляет собой совокупность электромагнитных волн — именно в форме волн проявляется электромагнитное поле в этом случае. Всякую волну можно характеризовать, например, интенсивностью и частотой (или величиной, обратно пропорциональной частоте, — длиной волны). Чем интенсивней поле, тем больше энергии оно несет. Что же происходит во время фотоэффекта?

Чтобы вырвать с поверхности металла электрон, каким-то образом связанный с остальными элементами вещества, электромагнитная волна должна «накачивать его энергией» до тех пор, пока эта связь не порвется, то есть кинетическая энергия электрона превзойдет по абсолютной величине его потенциальную энергию. После этого электрон покидает образец вещества с некоторой скоростью. В такой картине ясно, что чем интенсивней свет, тем большую энергию способен он передать электрону и тот будет вылетать из образца с большей скоростью.

Между тем экспериментальные данные по фотоэффекту давали совсем иную, весьма странную с точки зрения электродинамики картину. Начнем с того, что от интенсивности света, падающего на образец вещества, зависело только количество вылетающих электронов. Чем более интенсивный источник света использовался в опыте, тем больше электронов вылетало, тем сильней был вызываемый ими ток, регистрировавшийся специальным устройством. Скорость же электронов (или их кинетическая энергия) зависела только от длины волны падающего света! Удивительная ситуация — в результате облучения металлического образца, скажем, синим светом, электроны вылетали бы со значительно большими скоростями, чем в случае облучения красным светом. Но какова связь между окраской света и энергией, которую он передает электронам?

Известно было, что электромагнитные волны, соответствующие красному цвету, имеют большую длину волны, чем «синие» волны, то есть меньшую частоту. Но опять-таки классическая электродинамика не могла уловить связь между частотой и энергией.

Создалось весьма странное положение. С одной стороны, перед физиками лежала простая закономерность, добытая опытным путем: кинетическая энергия вылетающих электронов пропорциональна частоте света, которым облучают образец вещества. С другой стороны — превосходная теория, объяснившая десятки гораздо более сложных явлений, здесь, в простейшем, казалось бы, но чрезвычайно важном случае, совершенно бессильна… Естественный и очень красивый выход был предложен в 1905 году двадцатишестилетним А. Эйнштейном.

Этот год стал звездным не только для скромного клерка Швейцарского патентного бюро, успевшего буквально за несколько месяцев написать основополагающие статьи по квантовой теории и теории относительности, но и для всей физики XX века. Одна из этих статей и была посвящена разрешению загадок фотоэффекта.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика
Ткань космоса. Пространство, время и текстура реальности
Ткань космоса. Пространство, время и текстура реальности

Брайан Грин — один из ведущих физиков современности, автор «Элегантной Вселенной» — приглашает нас в очередное удивительное путешествие вглубь мироздания, которое поможет нам взглянуть в совершенно ином ракурсе на окружающую нас действительность.В книге рассматриваются фундаментальные вопросы, касающиеся классической физики, квантовой механики и космологии. Что есть пространство? Почему время имеет направление? Возможно ли путешествие в прошлое? Какую роль играют симметрия и энтропия в эволюции космоса? Что скрывается за тёмной материей? Может ли Вселенная существовать без пространства и времени?Грин детально рассматривает картину мира Ньютона, идеи Маха, теорию относительности Эйнштейна и анализирует её противоречия с квантовой механикой. В книге обсуждаются проблемы декогеренции и телепортации в квантовой механике. Анализируются многие моменты инфляционной модели Вселенной, первые доли секунды после Большого взрыва, проблема горизонта, образование галактик. Большое внимание уделено новому современному подходу к объяснению картины мира с помощью теории струн/М-теории.Грин показывает, что наш мир сильно отличается от того, к чему нас приучил здравый смысл. Автор увлекает всех нас, невзирая на уровень образования и научной подготовки, в познавательное путешествие к новым пластам реальности, которые современная физика вскрывает под слоем привычного нам мира.

Брайан Грин , Брайан Рэндолф Грин

Физика / Образование и наука