Я разгуливаю по планете — и груды энергетических кладов дуют на меня ветром. Другие хрустят под ногами снегом и песком. Третьи плещутся в морских волнах. Четвертые шелестят в листьях. Энергетические клады летают птицами, рыщут зверями. И каждый человек — тоже дремлющий заряд колоссальной энергии. И каждый муравей, и паутинка в лесу... Всюду скрыто обещание к гигантской, уму непостижимой работе.
Но на обещание наложен запрет. Сейфы закрыты.
Правда, не наглухо.
Во многих таких сейфах есть тоненькие щелочки, через которые вырывается наружу энергия, способная работать. Потому-то ползут муравьи, летят птицы, трудится, мыслит человек. И костры горят, и плавится чугун в доменных печах. И действуют ядерные реакторы, и жарко светит солнце...
Первая — очень узенькая — щелочка пробивается химическими реакциями. Как это происходит — разговор особый, касающийся микроскопической структуры вещества, связей между атомами и молекулами. Формула Эйнштейна утверждает главное: через «химическую щель» едва проникают стомиллиардные доли процента сокровища, спрятанного в сейфе вещества. Тем не менее, именно эта ничтожная часть энергии питает величайшее многообразие химических, электрохимических, биологических процессов, окружающих нас повсюду.
Я чиркнул спичку, зажег костер — проделал щелочку в сейфе-хворосте. Горит костер. Я греюсь энергией, освобождающейся в ходе химической реакции между топливом и кислородом. Энергия уходит, а с ней и масса. Поэтому продукты сгорания (угли, зола, дым, отходящие газы) должны весить меньше, чем исходные продукты (хворост и кислород). Разница, однако, настолько мала, что зафиксировать приборами ее невозможно. На каждый килограмм она составит меньше, чем 0,000 000 000 5 грамма! Так, старый, испытанный в поколениях химиков закон сохранения веса веществ до и после реакции соблюдается с высочайшей степенью точности, хоть, строго говоря, в нем нет абсолютной справедливости. Теория относительности вносит поправку: если при реакции выделяется (или поглощается) энергия, вес веществ после реакции становится чуть-чуть меньше (или, соответственно, больше).
Это «чуть-чуть» в обычной химии практически не играет никакой роли. Зато в ядерной химии и физике оно превращается в величину заметную и существенную, которую вполне можно обнаружить. Еще в 1905 году, в первой своей работе о теории относительности, Эйнштейн сделал на этот счет дальнее предсказание: он посоветовал проверить свою формулу на явлении радиоактивности, в котором, как он отметил, «содержание энергии может меняться в сильной степени».
Кусочек соли радия — это, пользуясь нашим сравнением, дырявый сейф. Из него непрерывно сочится энергия. И радий тает, распадается, превращается в другие химические элементы, теряет в весе. Довольно тонкий опыт позволил определить, какая доля массы уходит вместе с энергией, — получилось точное согласие с предсказанием Эйнштейна.
Нашлись в природе ядерные «сейфы», которые, подобно хворосту костра, поджигаемому спичкой, дают «трещину» по приказу извне, но довольно солидную, пропускающую несколько процентов энергии-массы. Прежде всего — знаменитое горючее атомной бомбы, некоторые разновидности металла урана. Роль запала поручена частице под названием нейтрон. Нейтрон разрушает ядро урана на осколки, а заодно освобождает значительную энергию, которая их сцепляла. Освобождается и соответствующая масса. Поэтому осколки весят на один-два процента меньше, чем ядро до деления. Один- два процента энергии-массы получают свободу — и следует катастрофический атомный взрыв.
Узнав о трагедии Хиросимы, Эйнштейн с отчаянием воскликнул: «О, горе!» Он считал себя причастным к мученической гибели японского города, ибо возможность ядерного взрыва была им предсказана за сорок лет.
Однажды ученый с печальной иронией назвал себя «дедушкой атомной бомбы».
А за несколько месяцев до смерти Эйнштейна в СССР открылась первая в мире атомная электростанция.
Ньютон совершил научный подвиг, открыв солнечное тяготение, разгадав, почему планеты движутся вокруг Солнца. Но вопрос «Почему Солнце светит?» для классической науки оказался непосильным. Множество гипотез провалилось. Солнце горело своим могучим огнем и одаривало Землю жизнью вопреки недоумениям механики и запретам химии. Будь оно сделано из первосортного угля, бензина, пороха — все равно энергии катастрофически не хватило бы. Не помогали предположения о бомбардировке Солнца метеоритами, о сжатии солнечного шара под действием собственной тяжести (тогда он должен был бы разогреться подобно тому, как греется воздух под поршнем насоса) и т. д. Это было удивление, от которого никто не видел путей бегства. По всем данным науки XIX века, Солнце обязано было давным-давно сгореть, погаснуть и застыть.
Формула Эйнштейна разрешила Солнцу светить так, как оно светит сегодня, миллиарды лет в прошлом и миллиарды лет в будущем. Взвешенное Ньютоном, оно получило из рук Эйнштейна право на гигантскую энергетическую жизнь.