Пока световой луч, «вычерчивая» гигантский космический треугольник, бежал бы от звезды к звезде, он вместе с тем «поднимался» бы в будущее. Это сделало бы невозможным возврат в точку старта — ведь вспять во времени двигаться запрещено во имя исполнения принципа причинности.
Но может быть, сама точка старта, равномерно «поднявшись» в будущее, совпала бы с финишем луча, обежавшего треугольник? В частном случае, при неизменно равномерном времени, это допустимо. Но в общем случае это невозможно, потому что, как объяснялось в девятнадцатой и двадцатой главах, вместе с деформацией пространства происходит деформация времени. Точка старта, двигаясь в будущее, могла пережить изменения темпа времени и встретиться с вернувшимся лучом совсем не там, где произошла бы эта встреча, будь время неизменно равномерным.
Строго говоря, в крупных, астрономических масштабах вообще невозможно построить пространственный треугольник. Он распадется при «черчении». И, значит, невозможно измерить его углы. И, следовательно, невозможно определить кривизну пространства.
Такова же причина объявленной нефизичности всех примеров двадцать первой главы.
Нет в эйнштейновской физике «независимого», «самостоятельного» пространства.
Тут снова отчетливо проступает существеннейшая черта идей Эйнштейна: неразделимость пространства и времени, их тесное единство. Только в специальных, нарочно придуманных случаях могут быть исключения — скажем, прямое время в искривленном пространстве (один из таких примеров — эйнштейновская космологическая модель Вселенной-—будет разобран в двадцать шестой главе). А как правило, деформация пространства обязательно сопровождается деформацией времени. Из этого и надо исходить при физическом осмыслении идей неевклидовой геометрии.
Короче говоря, раз уж есть где-то в мире кривизна, то она присуща сразу и пространству и времени.
Снова коротенькое воспоминание. Прочтите его не спеша и хорошенько прочувствуйте.
Много страниц назад, рассуждая о воззрениях Ньютона, я уподобил классическую систему пространственного отсчета гигантскому жесткому аквариуму. Он был незыблемо неподвижен, ибо покоился на неподвижных звездах. И относительно его дна и стенок можно было мгновенно отмеривать расстояния в абсолютном евклидовом пространстве. На аквариуме висели нематериальные звездные часы, отсчитывающие всеобщее, везде одинаковое, равномерное математическое время. Это был божественный остов ньютоновского мира.
При движении тел их пространственные координаты (расстояния до дна и двух стенок аквариума) непрерывно менялись, для разных тел по-разному. Время же для всех тел текло совершенно одинаково. Из-за этого пространство мыслилось независимым от времени. Таким оно пребывает и до сих пор в наших головах, потому что очень трудно выбить привычку жизни в мире Ньютона — в мире движений, медленных по сравнению со светом.
Затем, когда на арену выдвинулись быстрые движения, когда были запрещены скорости, превышающие световую, аквариум рухнул. Вместе с ним исчезли абсолютное время и абсолютное пространство. Эйнштейн выдвинул вместо них относительные пространства и относительные времена — свои для каждого тела, движущегося по инерции равномерно и прямолинейно. Можно сказать так: у всех таких тел появились собственные аквариумы, движущиеся вместе с ними по прямым равномерно, не быстрее света. Они остались вполне жесткими и прямыми, эти «индивидуальные» аквариумы. Но, во-первых, масштаб длины в любом из них стал неабсолютен — укорачивался для движущихся наблюдателей. И, во-вторых, для движущихся наблюдателей замедлился темп хода часов, висящих на аквариумах.
Так вместо движений, происходящих в абсолютном пространстве и едином математическом времени, появились движения в собственных и релятивистских временах и пространствах, соединенных неразделимо. Чтобы изображать их графически, мы построили диаграмму.
Это был мир Минковского[17]. К Каждому событию принадлежала четырехмерная мировая точка — три собственных пространственных отсчета и собственный отсчет времени. Для иначе движущихся систем все четыре отсчета этого же события были другими. Но в любой из этих систем отсчета, летящих относительно друг друга равномерно по прямым, квадрат интервала между двумя событиями сохранялся неизменным.
Последнее утверждение — знаменитая инвариантность интервала. Из нее Эйнштейн извлек все формулы частной теории относительности, все эти удивительные парадоксы, проиллюстрированные у нас приключениями Клио, недоразумениями с космической торговлей и т. д. Вплоть до закона эквивалентности массы и энергии и предсказания атомной бомбы.
Далее мы посетовали, что, несмотря на красноречивые успехи специальной теории относительности, она все же далековата от действительной природы: не было тяготения, пронизывающего Вселенную.
И тогда мы вспомнили о жерновах и песчинках. О странной особенности их совместного падения, подмеченной еще Галилеем, о необъяснимом у Ньютона равенстве тяжелой и инертной масс.