Читаем Белые пятна безбрежного океана полностью

Но чтобы полностью разрушить водородные связи, к воде нужно подвести значительное количество тепла - 2260 кДж/кг. Вот то обстоятельство, которое объясняет феноменальную теплоемкость воды, ее способность выполнять роль аккумулятора тепла в глобальных масштабах.

На поверхности воды "оголенные" протоны остаются "не у дела". Здесь им не на чем испытать силу своего воздействия: выше нет атомов кислорода. И тогда водородные протоны уподобляются притаившимся в ожидании жертвы осьминогам. Стоит только поднести к свободной поверхности воды предмет, в котором есть атомы кислорода, как протоны вцепятся в них "щупальцами" своих водородных связей. Этим и обуславливается способность воды смачивать те или другие вещества.

Прочность воды! Напомним, что согласно теоретическим расчетам, изготовленный из идеально чистой воды стержень диаметром 1 см должен был бы выдержать растягивающую силу в 37,49*104Н. Теперь уточним - подобные расчеты основываются на прочности водородных связей. Как перейти от теории к практике? Для этого нужно найти способ зафиксировать водородные связи. Вообще-то он известен - это охлаждение воды, превращение ее в лед (мы вернемся к этому позднее). Нам же хотелось бы придать воде не просто кристаллическую структуру, свойственную льду, а идеальную, упорядоченную структуру, которая и даст нам желанную сверхпрочность. Как сделать это, увы не придумали еще даже фантасты.

Что же, собственно, происходит при охлаждении воды? Прежде всего, здесь особенно наглядно проявляются ее аномальные свойства. Мы уже знаем, что вода, охлаждаясь от +100°С до + 4°С, как и все вещества в природе, сжимается, уменьшается в объеме. А затем от +4°С и до самого замерзания она увеличивается в объеме.

В чем тут дело? Конечно же, в специфичности водородных связей. Пока энергия теплового движения достаточно велика, "голому" водородному протону не удается зацепиться за атом кислорода "проплывающей" поодаль молекулы Н2О. "Багор с крючком", которым протон пытается пленить атом кислорода, либо, не выдержав, лопается, либо (и это чаще всего) оказывается слишком длинным. "Крючок багра" повисает над "головой" плывущего поблизости к протону кислородного атома.

Вот примерно какая ситуация должна иметь место, пока температура воды выше +4 °С. Молекулы воды имеют возможность скользить бок о бок, почти вплотную друг к другу. В это время в воде существует так называемый ближний порядок. Однако по мере охлаждения скорость движения молекул воды начинает падать. Теперь у протона есть время, чтобы вначале отодвинуть "багром" атом кислорода на длину "багра", а затем надежно зацепить его "крючком". Поскольку скорость движения мала, прочности "багра" будет вполне достаточно, чтобы остановить плененную молекулу Н2О и присоединить ее к собственной молекуле Н2О. Обратите внимание: молекула будет остановлена на строго определенном расстоянии, равном длине "багра".

У каждой молекулы Н2О два "голых" водородных протона, поэтому она захватывает сразу двух оказавшихся поблизости "соседок". Но одновременно на ее собственный атом кислорода будут переброшены два "багра" с других не менее расторопных протонов.

Так, быть может несколько упрощенно, мы с возможной наглядностью нарисовали картину возникновения кристаллической структуры льда - возникновение тетраэдров, которые начнут выстраиваться один за другим, как солдаты на плацу.

Рис. 11. Образование водородных связей между молекулами воды. 1 - кислород; 2 - водород; 3 - ковалентные связи; 4 - водородные связи. Каждая молекула перекидывает два мостика и одновременно на нее перекидываются два мостика. В результате возникает геометрическая фигура - тетраэдр

Так как для построения тетраэдра молекулы должны вначале отодвинуться одна от другой на определенные расстояния, объем, занимаемый замерзающей водой, естественно, увеличивается. И он будет расти до тех пор, пока вся вода не обратится в лед (рис. 11).

- Но, позвольте! - вправе удивится читатель. - Раз уж в кристаллах льда водородные связи проявили себя в полную силу, где же предсказанная вами "сверхпрочность"? Почему лед не стал прочнее стального сплава?

А потому, дорогой читатель, что в лед перешли все "пороки" воды: растворенные в ней газы и механические примеси. Кристаллическая структура льда полна всевозможных дефектов: трещин, уродливых нагромождений, втиснувшихся в парадный строй кристаллов атомов примесей. И от возможной сверхпрочности не осталось и следа.

Перейти на страницу:

Похожие книги

Деньги
Деньги

Ты уплатил в магазине деньги и получил эту книгу. Но подумай, что произошло: в обмен на несколько маленьких металлических кружков или раскрашенный листок бумаги тебе дали совсем не похожий на них предмет. Что за сила заключена в деньгах? Откуда у них такое необыкновенное свойство? Сама книга расскажет тебе об этом. Она написана для тех, кому пришли на ум такие вопросы.Для тех, кто не знает, когда и почему появились деньги; для тех, кто хочет понять, какое значение имеют деньги в жизни людей; для тех, кто знает, и для тех, кто не знает, отчего существует в мире жадность к деньгам и преклонение перед ними; для тех, кто любит разгадывать тайны древних монет, читать по ним о далеких временах и давно живших людях; для тех, кому интересно узнать, как делают деньги; для тех, кого занимает вопрос, всегда ли были деньги и всегда ли они будут.

Александр Браун , Георгий Васильевич Елизаветин , Даниил Михайлович Тетерин , Карел Чапек , Сергей Новиков , Эдвард Джордж Бульвер-Литтон

Экономика / Детективы / Детская образовательная литература / Исторические приключения / Книги Для Детей / Карьера, кадры