В последовательности всегда есть первое число, второе и так далее. Существуют последовательность нечетных натуральных чисел (1, 3, 5, 7, 9, 11, ...) и последовательность простых чисел (2, 3, 5, 7, 11,...). Последовательности могут иметь и конечное число членов, но мы рассмотрим только те из них, которые, как в предыдущих примерах, состоят из бесконечного количества не повторяющихся членов.
Заметим, что для установления взаимно однозначного соответствия между натуральными и целыми числами мы должны сначала представить их в виде последовательности: 0,1, -1, 2, -2, 3, -3,... То же самое необходимо для установления соответствия между натуральными и рациональными числами:
Следовательно, утверждение, что некое множество чисел эквивалентно множеству натуральных чисел, означает, что его члены могут быть представлены в виде последовательности.
Георг Кантор в письме Рихарду Дедекинду 27 декабря 1873 года
Используя это следствие, Кантор не стал упоминать в своей статье ни об эквивалентности натуральным числам, ни об общем кардинальном числе, а просто рассмотрел возможность организации членов некоей группы в виде последовательности.
Теперь вернемся к числовой оси и предположим, что мы уже отметили числа 0 и 1. Исходя из этих отметок, позиции других чисел тоже строго определены. Будет ли ось полностью заполнена, если мы отметим на ней рациональные числа? Другими словами, можно ли записать все числа как соотношение двух целых чисел? Ответ на оба вопроса: нет. После того как мы нанесем на ось все рациональные числа, на ней все равно останутся точки, которым не будет соответствовать никакое число. Открытие иррациональных чисел приписывается Пифагору (VI век до н.э.), хотя, возможно, это был кто-то из его учеников. Иррациональные числа не могут быть представлены в виде соотношения целого и натурального числа, например 2-1,4142.... .. и = 3,14159... Дополняют ось вещественные числа.
Именно они — включая в себя рациональные и иррациональные числа — не оставляют на оси ни одной свободной точки.
Мы вернемся к вещественным числам в следующей главе, так как они занимают важное место в развитии научных теорий Кантора. А пока рассмотрим вопрос: эквивалентно ли множество вещественных чисел множеству натуральных чисел (как в случае с целыми и рациональными числами)? Ответ стал одним из главных открытий Кантора: нет, эти множества неэквивалентны, то есть между ними нельзя установить взаимно однозначное соответствие.
Для доказательства недостаточно привести один пример неудавшегося соответствия, требуется показать, что провалом закончится любая попытка установить взаимно однозначное соответствие между натуральными и вещественными числами. Невозможно сделать так, чтобы каждое натуральное число соответствовало вещественному.
Для наглядности рассмотрим конкретный случай, в котором попытка установить соответствие оборачивается неудачей. Этот пример действителен для любой другой попытки, поэтому можно утверждать, что установить соответствие невозможно никоим способом. Попробуем найти пару для каждого вещественного числа из группы натуральных чисел и увидим, что какое-то вещественное число обязательно останется без пары (ниже показаны натуральные числа только от 0 до 4, хотя на самом деле этот список продолжается бесконечно).
Принцип, по которому распределялись числа, неясен, но это и не важно, так как данный метод работает вне зависимости от того, какое правило принято за основу. Обратим внимание на цифры после запятой.
Теперь рассмотрим диагональ, которая стремится от левого верхнего угла к правому нижнему. Она настолько важна в этом доказательстве, что само доказательство получило название диагонального метода.
Число, которое мы ищем (то, которому не найдется пары), начинается с 0,... а цифры после запятой будут зависеть от чисел, отмеченных по диагонали. Чтобы получить первую цифру после запятой, возьмем первую цифру диагонали и прибавим 1 (если это цифра 9, то запишем только 0). В нашем случае это цифра 3, поэтому число начнется с 0,4... Чтобы получить следующую цифру, прибавим 1 ко второму числу диагонали (опять же если это 9, мы запишем 0). Для третьей цифры числа возьмем третье число диагонали и так далее. В нашем примере мы получим 0,41162...