Но это — в прошлом. Теперь изучение природных конструкций ведется планомерно, с использованием новых, небывало мощных и бесконечно тонких физико-математических и химических методов. Глубокие и всесторонние исследования принципов самоконструирования живых организмов за сравнительно короткий срок принесли богатый урожай открытий. Познакомимся же с тем новым, что внесено изучением природных конструкций в строительную технику и архитектуру.
В Дакаре проектировали здание театра, внутри которого не должно было быть ни одной колонны, ни одной даже декоративной опоры — все здание должно было представлять собой огромную, пустую, тонкую железобетонную "скорлупу", покоящуюся на специальном фундаменте.
Когда все расчеты были закончены, оказалось, что запроектированной конструкции здания явно не хватает прочности. Между тем естественная яичная скорлупа легко выдерживает соответствующие нагрузки. В чем же дело? Пришлось обычное "выеденное яйцо" подвергнуть тщательному изучению. Установили, что его прочность объясняется тонкой и эластичной пленкой-мембраной, благодаря которой скорлупа оказывается конструкцией с предварительным напряжением. Этим открытием строители не преминули воспользоваться при сооружении театрального здания, только мембрана была, конечно, изготовлена не из "куриного" материала, а из армоцемента.
Помимо яичной скорлупы в природе имеется множество других форм оболочек, заслуживающих подражания. Это скорлупа ореха, панцири животных, раковины и т. п. Все эти природные структуры характеризуются изогнутой поверхностью, высокой жесткостью и твердостью материала. Тонкие и легкие, они вместе с тем весьма прочны, требуют незначительного расхода "строительного материала". Эти же качества характерны и для современных строительных конструкций, называемых оболочками. И не случайно во всех странах инженеры, занявшиеся проектированием и сооружением зданий такого рода, каждый на своем языке назвали эти конструкции скорлупами. Тонкие армоцементные скорлупы толщиной 15 — 30 мм покрывают ныне без опор пространства высотой до 120 и более метров. При этом, чем больше пролет, тем тоньше и легче (до определенных пределов) должна быть скорлупа!
Заговорив о форме, рождающей прочность, нельзя не рассказать об удивительном устройстве некоторых листьев, подсказавшем архитекторам так называемые "складчатые конструкции". Речь пойдет о существующих в растительном мире листьях, имеющих ребристую форму и форму веера. В этих структурах, пожалуй, нашла свое наиболее яркое воплощение одна из самых интересных закономерностей природы — "сопротивляемость конструкции по форме".
Что же скрывается за этим сухим инженерным термином, каков его смысл? Поясним простым примером. Возьмем лист обычной писчей бумаги и положим его противоположные края на подставки (рис. 2). Лист не выдержит собственного веса и прогнется. А теперь сложим тот же лист "гармошкой" и положим его опять на две опоры так, чтобы параллельные складки шли поперек пролета. Нетрудно убедиться, что такой гофрированный лист ведет себя иначе, чем гладкий. Он устойчив и может легко, не деформируясь, выдержать нагрузку, равную стократной величине его собственного веса; если же к торцам складок приклеить усиливающие полоски, то гофрированный лист сможет выдержать еще большую нагрузку. Что же произошло, ведь в нашем опыте ни размеры листа, ни его вес, ни качество не изменились? Все дело в новой форме листа — она придала ему новые механические качества. Используя принцип "сопротивляемости по форме", в США построили складчатые купола пролетом 100 — 200 м, во Франции произвели перекрытие павильона пролетом 218 м. Широкое применение получили тонкостенные пространственные складчатые конструкции и в СССР. Это стало возможным благодаря глубоким исследованиям советских ученых и инженеров, посвященным теории складок, методам возведения большепролетных сооружений.