В настоящее время обмен информацией между человеком и машиной осуществляется по сравнительно небольшому числу каналов, главным образом посредством выполняемых двигательных актов: нажатием кнопок, ключа телеграфного аппарата, клавиш, перемещением рычагов, педалей, поворотом рулевого колеса и т. п. Что же касается информации, поступающей от машины к человеку, то она сводится лишь к звуковым и световым сигналам (включение различных табло, цифровая индикация). Между тем возможности связи человека с машинами значительно обширнее, чем это имеет место сейчас (рис. 5). Достаточно напомнить, что, кроме зрения и слуха, человек обладает обонянием, осязанием, вкусом, а также проприоцептивной чувствительностью. Все эти входы живой системы — человека — могут весьма успешно использоваться для ввода в машину самой разнообразной информации. И бионика идет именно по этому пути. В целях обеспечения наилучшего общения человека с машиной бионика пытается широко использовать биологические принципы в технике. Иными словами, в отличие от кибернетики и инженерной психологии, пытающихся разработать оптимальные методы использования человеческих возможностей для управления сложнейшими техническими системами, бионика идет по пути улучшения связи человека с машиной не за счет рационализации человеческих качеств, а за счет "биологизации" машин. Примером может служить проводимая в настоящее время работа по созданию "слышащих" машин.
Такую машину нужно прежде всего снабдить отличным слуховым аппаратом. Это задача, так сказать, номер один. Но услышать сообщение — распознать "слуховые образы" — еще полдела. Нужно также научить машину "понимать" его смысл — в противном случае автомат превратится в некое кибернетическое подобие гоголевского Петрушки, который, как известно, отличался тем, что все читал с равным вниманием. Его увлекал сам процесс чтения: "... что вот-де из букв вечно выходит какое-нибудь слово, которое иной раз черт знает что и значит". "Научить" машину "понимать" человеческую речь — задача номер два. Обе задачи неотделимы друг от друга — это типичные бионические проблемы.
Итак, бионический аспект рассматриваемой нами проблемы "человек — машина" ("человек — автомат") заключается в поиске новых путей для построения машин (автоматов), наилучшим образом согласованных с человеком-оператором. Задача состоит в создании своеобразного симбиоза человека и машины, т. е. такой их кооперации, при которой машина будет выполнять устные команды, заданные инструкции или выдвигать гипотезы и доказывать их, а человек — оценивать их и давать новые распоряжения или инструкции. Процесс общения человека с машиной нельзя разделять. Для достижения этого нужно усовершенствовать (формализовать) обычный язык так, чтобы каждое сообщение человека при его связи с машиной имело для нее определенный логический вес. В этом направлении уже получены некоторые результаты.
По сообщениям американской печати, датированным январем 1962 г., в Корнельском университете был разработан первый перцептрон "Тоберморей", способный "опознавать" произносимые слова. Система памяти этого экспериментального перцептрона содержала около 1000 ячеек, а электроакустический преобразователь (микрофон с последующей записью на магнитную ленту) принимал до 1600 отдельных акустических сигналов. Почти одновременно или немного позднее сотрудники Иллинойского университета разработали динамический преобразователь сигналов для выделения инвариантов, т. е. неизменных частотных составляющих, служащих основой данного звука речи. Этот прибор содержит систему фильтров и дифференцирующих цепей, при помощи которых производится разложение звуков на частотные составляющие и выделение инвариантов. Создатели прибора считают, что он может быть использован для разработки системы автоматического опознавания слов, а также для предварительной обработки данных в адаптивных системах.