Такая модель была создана. И она безошибочно отличала красный свет от синего, но только в том случае, если энергетическая яркость обоих пучков оставалась постоянной. Если же яркость пучка синего света постепенно увеличивалась, то модель ошибалась и называла его красным. И с этим ничего нельзя было сделать: ведь для модели соответствующее такому изменению освещенности медленное нарастание тока фотоэлемента служит признаком именно красного цвета. Попутно выяснилось, что человеческий глаз тоже делает такого рода ошибки. Далее. При длительной экспозиции ток фотоэлемента в весьма короткое время достигает некоторой установившейся величины (время нарастания импульса), и только в этом интервале времени модель может определить, красный ли свет падает на нее или синий. По величине установившегося тока об этом судить нельзя. Но и здесь налицо аналогия с особенностью человеческого зрения. Ведь мы видим неподвижные предметы только благодаря непрерывному подергиванию глазных яблок — тремору. Был проделан такой опыт. Непосредственно к глазному яблоку прикреплялся с помощью присоски небольшой диапозитив. Естественно, что он двигался вместе с глазом и на сетчатку проектировалось его неподвижное изображение. И человек переставал видеть картинку, не говоря уже о ее расцветке.
Почему для зрительного восприятия неподвижных предметов нужен тремор? Фотохимическая теория зрения на этот счет не может дать никаких объяснений. А вот почему фотоэлемент (в котором не происходит химических реакций, но с помощью которого модель тем не менее различает цвета) выдает информацию о цвете только за время установления процесса, это ясно из предыдущего. Кстати, роль мышцы, двигающей глаз и таким образом делающей видимыми неподвижные предметы, может в модели с успехом исполнять, например, обтюратор кинопроекционного аппарата.
Итак, ученым удалось создать устройство, обладающее цветовым зрением, но эта функция моделируется без помощи каких бы то ни было фотохимических реакций. В приборе используется фотоэффект. На этом основании авторами исследования была выдвинута новая, фотоэлектрическая теория зрения. Однако ни старая — фотохимическая, ни новая — фотоэлектрическая теории не могут пока удовлетворительно объяснить ряда экспериментальных данных, касающихся устройства и функционирования органов зрения. Накопление фактов и обобщения делаются во многих лабораториях мира. Результаты не должны заставить себя ждать.
Цветоощущение — это лишь одна сторона проблемы зрения. Другой ее аспект, давно привлекший внимание ученых, — возможность моделирования узнавания, или, как говорят специалисты, работающие в этой области, опознавания образов.
Опознавание образа заключается в выборе одного образа из системы образов, накопленных и классифицированных по определенным признакам. Для человека — это выбор из системы образов, сложившихся в течение его жизни.
Проделаны эксперименты, однозначно подтверждающие первостепенную роль выбора в процессе опознавания. Подсчитано, что число образов типа "печь", "стул", "стол" и т. д. составляет у взрослого человека всего около 1000. Достаточно четкое изображение любого из этих предметов-образов будет с большой долей вероятности (или попросту — почти наверное) опознано человеком. Как нам это удается?
Каждый светочувствительный элемент сетчатки человеческого глаза (палочки и колбочки) воспринимает проектируемое на нее хрусталиком изображение, образуя своеобразное мозаичное панно. Каждый элемент мозаики имеет определенный тон — от черного до белого. В самом деле, ведь палочки и колбочки расположены на некотором расстоянии друг от друга и реагируют на яркость только того участка объекта, который проектируется на каждую из них в отдельности. Поэтому падающее на сетчатку изображение имеет вид густо расположенных точек, отличающихся по яркости, а расстояние между ними соответствует расстоянию между светочувствительными элементами. Такое изображение очень похоже на обыкновенное газетное клише. В нем яркость отдельных элементов не изменяется хаотически, а в основном определяется распределением яркости по объекту. Весьма немногочисленные элементы изображения, соответствующие границе между разными по тону его участками, значительно отличаются по яркости от своих соседей.
Такие элементы образуют контурные линии, и именно с ними связана наибольшая часть информации. В этом легко убедиться, если вспомнить, например, как легко по шаржу, дающему очень неполное представление об оригинале, узнать человека.
При опознавании сложного образа не требуется его расчленение на все простейшие конфигурации, из которых состоит сам образ, хотя, если это потребуется, зрительная система может детально проанализировать изображение, подобно тому как это делается в передающих телевизионных трубках. (Такая аналогия, разумеется, весьма поверхностна. Речь идет о том, чтобы просмотреть изображение "все как есть".)