И все же, несмотря на высказываемые многими учеными возражения и сомнения по поводу "РНК-гипотезы", безусловно, следует положительно оценить общую тенденцию к поискам связи между физиологией высшей нервной деятельности и молекулярной биологией. Разработка правильной в целом идеи об участии РНК и белкового синтеза в явлениях долговременной памяти, безусловно, перспективна. По всем данным РНК принадлежит немаловажная роль в механизме памяти. Это вещество очень близко к дезоксирибонуклеиновой кислоте (ДНК), являющейся, как известно, носителем информации наследственности, зашифрованной в химическом виде фактически во всех живых организмах. Если генетическая информация может передаваться веществом ДНК, то вполне резонно предположить, что вещество РНК может быть носителем информации другого типа...
Пока никто не в состоянии дать исчерпывающий ответ на все вопросы, связанные с деятельностью мозга: о механизме памяти, об удивительной системе произвольного доступа к огромным запасам информации, хранящейся в мозгу, о гибкости и надежности памяти человека. Но великий русский физиолог И. М. Сеченов, очень хорошо понимавший титаническую трудность проблемы, утверждал, что предпосылки для понимания функции мозга состоят в "...строгом разборе его машинности". Успехи кибернетики и бионики — лучшее доказательство справедливости этого тезиса. Новым наукам, развиваемым совместными усилиями физиологов, математиков и специалистов по электронике, союз которых оказался чрезвычайно плодотворным, по плечу любая задача. Рано или поздно ученые смогут выведать у мозга самые сокровенные его тайны.
Значительная и даже, пожалуй, основная часть ведущихся ныне исследовательских работ по бионике посвящена созданию аналогов биологического нейрона — нервной клетки, являющейся основным элементом нервной системы. Конечная цель этих работ — создание систем, предназначенных для накопления, обработки и передачи большого количества информации, электронных машин, способных решать любые сложные задачи без предварительного программирования, различных самообучающихся, адаптивных (самоприспосабливающихся), самонастраивающихся, самоорганизующихся устройств, обладающих малыми габаритами и высокой надежностью. Иными словами, речь идет о создании широкого комплекса автоматических систем, функционирующих по принципу, аналогичному законам деятельности и принципам организации живого мозга.
Нервная система человека и животных содержит нейроны различных типов, при помощи которых мозг воспринимает, обрабатывает, накапливает и передает информацию, регулирующую работу биологической системы в соответствии с изменением внешних условий, т. е. так, чтобы обеспечить ее наибольшую адаптацию к окружающей среде. В основном нейроны делятся на три класса: чувствительные (сенсорные), или рецепторные, которые воспринимают и передают свет, тепло, давление и другие воздействия внешней среды; двигательные (моторные), или эффекторные, контролирующие сокращение мышц; вставочные (ассоциативные), или про-межуточные, которые связывают между собой специализированные типы и комплектуют мозг. Нейроны этих трех классов можно рассматривать как входные устройства, выходные устройства и все, что находится между ними. Помимо различий в величине и форме, у нейронов встречаются и необычные структуры, наиболее заметные у некоторых рецепторных нейронов; окончания этих нейронов снабжены разнообразными приспособлениями (физик назвал бы их преобразователями), с помощью которых давление, химический состав, температура или иные физические величины, воспринимаемые нейронами, могут преобразовываться в особые электрохимические сигналы.
Для того чтобы познакомиться со строением нервной клетки и ее работой, возьмем в качестве образца промежуточный нейрон. Этот выбор обусловлен тем, что промежуточный нейрон является типичной нервной клеткой живого организма — из общего числа имеющихся у человека нервных клеток более 9 миллиардов являются промежуточными нейронами. Схематическое изображение нейрона приведено на рис. 1. Он состоит из тела клетки (1), содержащего ядро и цитоплазму, заключенную в оболочку (мембрану), от которой отходят ветвящиеся отростки — дендриты (2), осевой отросток, или нервное волокно, — аксон (3), заканчивающийся концевым разветвлением (5), примыкающим к другим клеткам через синаптические контакты, или синапсы (6). От аксона отходят боковые отростки — коллатерали (4), также заканчивающиеся на других клетках.
Тело нервной клетки в поперечнике обычно меньше 0,1 мм. Объем крупного нейрона составляет примерно 0,001 мм3
. Дендриты имеют диаметр порядка 0,01 мм и длину от долей миллиметра до десятков сантиметров. Длина аксона нервных клеток человека колеблется от долей миллиметра до 1,5 м (при толщине около 0,025 мм).