Читаем Беседы о бионике полностью

На рис. 9 схематически изображен магнитный интегрирующий (накапливающий) аналог нейрона (MIND). Основой этого элемента служит магнитный сердечник из феррита с прямоугольной петлей гистерезиса. Внутри сердечника имеется канал, в котором проходит стробирующая обмотка. Сверху канал закрыт шайбой из материала с большой магнитной проницаемостью. На сердечнике имеются обмотки записи и считывания, которые часто совмещаются. Сердечник реагирует только на входные воздействия, способные создавать напряженность магнитного поля, превышающую коэрцитивную силу Нс. Пусть вначале сердечник находится в состоянии, характеризующемся точкой О (рис. 10). С приходом первого "раздражения" он перейдет в состояние 1', а после его окончания — в состояние 1. Следующее "раздражение" переведет сердечник в состояние 2' и т. д. Таким образом, в сердечнике происходит накопление энергии, которая является в данном случае носителем информации.

Считывание осуществляется подачей в нужный момент стробирующего импульса, который вызывает появление поля, перпендикулярного исходному. Происходит изменение вектора результирующего поля в сердечнике, и на выходной обмотке наводится сигнал, величина которого зависит от предыдущего состояния сердечника, т. е. пропорциональна накопленному в результате предшествующих экспериментов ("обучения") магнитному потоку.

Достоинством такого элемента является отсутствие расхода энергии на хранение информации и сохранение состояния сердечника даже при выключении устройства. Кроме того, такие элементы отличаются очень высоким быстродействием.

Работы по созданию бионических элементов, способных выполнять логические функции живых нервных клеток, из года в год принимают все больший и больший размах. Достаточно сказать, что уже сейчас имеется несколько сот моделей искусственных нейронов, которые в большей или меньшей степени отражают свойства реальных нейронов. Некоторые из них, такие, как артроны, нейристоры и др., успешно используются сегодня для усовершенствования технических средств связи, вычислительных и управляющих машин. Предпринимаются попытки разработать (по аналогии с живыми) искусственные нейроны в виде микрокомпонент коллоидных (10-5-10-7 см) и молекулярных размеров (10-7-10-8см). С этой целью исследуются полупроводниковые микроструктуры (двух- и трехмерные схемы из проводящих элементов в изолирующей среде), коллоидные системы с дисперсной сажей, образующие проводящие нити в изолирующих жидких растворах, а также различные микропористые структуры. Изучаются также атомные системы в различных кристаллических и полимерных структурах.

В заключение нашего краткого обзора моделей искусственных нейронов различного типа рассмотрим электрохимический элемент памяти, так называемый мемистор. Один из вариантов мемистора показан на рис. 11. Входное воздействие преобразуется в постоянный ток, цепь которого замыкается через центральный электрод 1, электролит 2 и кольцевой электрод 3. Электролитом обычно служит раствор медного купороса. Прохождение через него постоянного тока вызывает осаждение (или снятие) на электроде 1 слоя меди, что и изменяет его электрическую проводимость. При изменении анодного тока на несколько миллиампер сопротивление мемистора за 10 сек плавно изменяется от 100 до 1 ом. Измеряют это сопротивление на переменном токе, чем исключается влияние сигнала считывания на процессы электролиза, происходящие в элементе. Вследствие малого разброса параметров мемисторов обеспечивается возможность создания большого количества запоминающих уровней. Из таких элементов построены, например, самоприспосабливающиеся нейроны, служащие запоминающими элементами в адаптивных системах с обучением.

Рис. 11. Электрохимический аналог нейрона — мемистор


Итак, сегодня уже не приходится сомневаться, что создание достаточно совершенного, дешевого и миниатюрного аналога нейрона откроет широкие возможности для построения различных обучающихся, самопрограммирующихся, самоорганизующихся, самонастраивающихся, самоприспосабливающихся систем, т. е. систем, обладающих свойством автоматически изменять свои параметры в соответствии с изменением внешних условий. Такие системы, как указывает академик В. А. Трапезников, — "это близкое завтра автоматики и, несомненно, следующая, более высокая ступень прогресса человеческого общества".

Необходимость создания самонастраивающихся и самоорганизующихся систем ныне возникает в самых разнообразных областях техники. Такие системы должны обеспечить наибольшую эффективность работы управляемого объекта в существенно изменяющихся условиях. Это положение распространяется на объекты, действующие непрерывно, периодически и спорадически. Однако наибольшее значение в современных условиях имеет проблема использования самонастраивающихся систем для управления непрерывными процессами. Такими системами можно, например, воспользоваться для полной автоматизации управления рядом химических производств, доменным процессом, прокатом металла, сваркой труб и т. п.

Перейти на страницу:

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное
Вызовы и ответы. Как гибнут цивилизации
Вызовы и ответы. Как гибнут цивилизации

Арнольд Тойнби (1889–1975) – английский философ, культуролог и социолог. Он создал теорию «вызова и ответа» (challenge and response) – закономерность, которая, по его мнению, определяет развитие цивилизации. Сэмюэл Хантингтон (1927–2008) – американский философ, социолог и политолог. Он утверждал, что каждая цивилизация видит себя центром мира и представляет историю человечества соответственно этому пониманию. Между цивилизациями постоянно идет противостояние и нередко возникают конфликты. Исход такой борьбы зависит от того, насколько данная цивилизация «соответствует» сложившемуся миропорядку.В данной книге собраны наиболее значительные произведения А. Тойнби и С. Хантингтона, позволяющие понять сущность их философии, сходство и расхождения во взглядах. Особое внимание уделяется русской цивилизации, ее отличиям от западной, точкам соприкосновения и конфликтам русского и западного мира.

Арнольд Джозеф Тойнби , Самюэль Хантингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии