При создании полупроводниковых устройств с заданными свойствами можно управлять распределением электроактивных примесей (мышьяка, бора, алюминия и т. д.) в кристаллических решетках чистых кристаллов и тем самым создавать в них микрозоны, выполняющие роль диодов, триодов, конденсаторов, сопротивлений, т. е. размещать всю сложнейшую радиоэлектронную схему в одном миниатюрном кристалле. Когда эта задача будет осуществлена полностью, представится возможность не собирать из отдельных деталей, а, что называется, выращивать целиком электронно-вычислительные машины, телевизоры и средства связи.
Влияние, которое оказала полупроводниковая электроника на столь многие отрасли науки и техники, явилось, как мы уже говорили, прямым результатом появления возможности обработки с ее помощью огромного количества информации любого сорта. На первых этапах автоматизация производства и процессов контроля развивалась медленно из-за опасения, что производство окажется в зависимости от центральной ЭВМ, и из-за высокой стоимости управляющих звеньев.
И ЭТУ СТОИМОСТЬ УДАЕТСЯ ПОНИЗИТЬ?
Непрерывное понижение стоимости одной вычислительной операции достигается путем размещения на одной пластинке кремния все большего числа компонентов — диодов, транзисторов, конденсаторов и резисторов. Этому способствуют развитие физики твердого тела и совершенстование технологических процессов изготовления кремниевых пластин, на некоторых из них сейчас можно разместить больше действующих элементов, чем их содержало самое сложное электронное устройство в 60-е годы. Так, если в 1960 г. монокристалл кремния содержал одну деталь схемы, в 1965 г. — 10, в 1970 г. — 1000, то к 1975 г. — уже 32 000. И если нынешние темпы повышения сложности схем будут сохраняться, то через 20–30 лет могут появиться схемы (из называют
При этом стоимость одного монокристалла повышалась весьма умеренно и стоимость одного элемента резко упала. Поэтому легко понять, почему полупроводниковая электроника не только сделала возможным создание очень больших вычислительных машин, но и проникла во многие отрасли народного хозяйства. Это позволило контролировать и собирать информацию даже от отдельных небольших этапов технологического процесса.
ЭТИМ ЗАНИМАЮТСЯ МАЛЫЕ И ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ?
Малые компьютеры, скомпонованные, приспособленные и запрограмированные для выполнения конкретных задач, стали теперь повсеместной принадлежностью лабораторий, промышленных предприятий. Однако возможности одного персонального компьютера ограничены. В инженерной практике существуют задачи различной, в том числе и большой, сложности.
Персональный компьютер можно сделать частью вычислительной системы (сети), включающей в себя много компьютеров. Каждый из них будет что-то делать сам, а другие данные получать от других частей системы.
Компьютеризация большинства сфер нашей деятельности — необходимейшая и неотложная задача. Для ее решения нам предстоит ликвидировать так называемую компьютерную неграмотность и научить практически все население страны пользоваться вычислительной техникой.
КАКОВЫ ОСОБЕННОСТИ СОВРЕМЕННОГО ЭТАПА РАЗВИТИЯ ПОЛУПРОВОДНИКОВОЙ ТЕХНИКИ?
Этот этап характеризуется в нашей стране большим объемом научно-исследовательских и технологических работ, направленных на дальнейшее совершенствование имеющихся и создание новых полупроводниковых приборов.
В последние десятилетия были проведены фундаментальные исследования тонких поликристаллических полупроводниковых пленок. Особенно обещающим является внедрение полупроводниковых пленок, созданных методом облучения подложки в высоком вакууме раздельными атомными и молекулярными пучками от нескольких источников, интенсивность которых позволяет выращивать пленки с заданным составом и свойством.
Такой метод нашел широкое применение при изготовлении полупроводникового материала для специальных диодов — полевых транзисторов, лазеров и интегральных оптических схем.
Современные интегральные схемы отличаются весьма незначительными размерами составных элементов. Дальнейшая миниатюризация включает в себя уменьшение линейных размеров размещенных на пластинке элементов, ширины соединительных линий и диаметров отверстий. Для размещения всех составных элементов на пленке применяют литографический способ. Наиболее употребительная форма литографии — фотолитография, при которой фотоэкспозиция меняет свойств, а светочувствительного вещества пленки. Световая экспозиция, естественно, не может передавать изображение, размеры которого меньше, чем длина волны используемого света. Поэтому еще недавно размеры порядка 1 или 0,5 мкм были крайним пределом размеров микроструктуры интегральной схемы.
В настоящее время в качестве метода, обеспечивающего создание значительно более тонкой структуры схемы, используют электронный или протонно-ионный пучки.
Александр Григорьевич Асмолов , Дж Капрара , Дмитрий Александрович Донцов , Людмила Викторовна Сенкевич , Тамара Ивановна Гусева
Психология и психотерапия / Учебники и пособия для среднего и специального образования / Психология / Психотерапия и консультирование / Образование и наукаАлександр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин
Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес